Preview only show first 10 pages with watermark. For full document please download

бодолт: ( ) ,2

46. AOB = 9, Rрадиустай секторын AO, OB хэрчмүүд болон AB нумыг шүргэсэн тойрог багтсан бол тойргийн радиусыг ол. Бодолт: MO = x, OO = OK OK OO = R x, OO M = 45 = OMO OM = OM = O K = x, x + Rx R = ( )

   EMBED

  • Rating

  • Date

    May 2018
  • Size

    535.5KB
  • Views

    9,269
  • Categories


Share

Transcript

46. AOB = 9, Rрадиустай секторын AO, OB хэрчмүүд болон AB нумыг шүргэсэн тойрог багтсан бол тойргийн радиусыг ол. Бодолт: MO = x, OO = OK OK OO = R x, OO M = 45 = OMO OM = OM = O K = x, x + Rx R = ( ) R x x x x = + =, x R R R R R R ( ), = ± + = ± = ± Хариу : r = R ( R + ), R = ( R ) 46. радиустай тойргийн төв O г дайрсан шулуун дээр OA = 5, AB = 5 байх A ба B цэг авчээ. ( А цэг нь О ба В цэгийн хооронд оршино). А ба В цэгээс тойрогт шүргэгчүүд татсан бөгөөд шүргэгчийн цэгүүд нь ОВ шулууны нэг талд оршино. С нь эдгээр шүргэгчүүдийн огтлолын цэг бол АВС Δ - гурвалжны талбайг ол. Бодолт: OAM = α, OBN = β, ACB = α β, OM OA ON = sinα, = sin β, OB 3 cosα =, 5 4 cos β =, 5 BC AB 4 sinα =, 5 sin 8 = sin 3 sin β =, 5 ( α ) ( α β ), 4 5 ABsinα ABsinα 5 BC = = = = sin ( α β ) sinα cos β cosα sin β S ABC = AB BC sin ABC = 5 = 7 5 7 46.Нэгньнөгөөгийнхөөгаднаталдбайрлаххоёртойргийнхоорондоххамгийнихзайньэдгээртой ргуудынрадиусыннийлбэрдээртөвүүдийнхоорондохзайгнэмсэнтэй тэнцүү гэж батал. Бодолт: CD = r + OO + R 463. R ба r радиустай тойргуудын төвүүдийн хоорондох зай a ба a R + r бол нэг цэг нь нэгдүгээр тойрог дээр нөгөө цэг нь хоёрдугаар тойрог дээр орших эдгээр тойргуудын хоорондох хамгийн бага зайг ол. Бодолт: CD = r + OO + R, OO = r + AB + R, AB = a ( R + r) 464. Концентр тойргийн хоорондох хамгийн бага зай нь хамгийн их зай нь 6 бол эдгээр тойргийн радиусыг ол. AC =, AD = 6 R + r = 6 R r = эндээс R = 9. r = 7 465.Өгөгдсөн цэгээс тойрог хүртлэх хамгийн бага зай нь a хамгийн их зай нь b -тэй тэнцүү бол тойргийн радиусыг ол.. AB = R BM = a AM = b R =? AB = AM BM AB = b a R = b a b a R =. AM + MB = AB, a + b = R, a + b b a b + a R = Хариу : ба 466. радиустай тойргийн төвөөс 3 нэгж зайд орших цэг өгөгдөв. Уг цэгээс тойрог хүртлэх хамгийн их ба бага зайг ол. OA = OB =, OM = 3 MA =? MB =? AM = OA OM = 3 = 7 BM = OB + OM = + 3 = 3 Хариу : 3 ба радиустай тойргийн төвөөс 5 зайд орших цэг өгөгдөв. Уг цэгээс тойрог хүртлэх хамгийн их ба бага зайг ол. Бодолт: OA = OB =, AB =, OM = 5, AM =? OA + AM = OM, + 5 BM =? AM = AM = 5 = 5 BM = + 5 = 5 Хариу :5 ба 5 468. Нэг нь нөгөөгийнхөө дотор орших тойрог өгөгдөв. Эдгээр тойргийн төвүүдийг дайруулан том тойрогт диаметр татахад уг диаметр нь 5, 8 ба гэсэн 3 хэсэгт хуваагдсан бол тойргийн төвүүдийн хоорондох зайг ол. AC = 5, CD = 8, DB = O O =? r = CD = 4, R = = 7, ( ) OO = O B ( OD + DB), OO = 7 ( 4 + ) = 7 5 = Хариу : 469. Хэрэв а. Радиусууд нь 8 ба төвүүдийн хоорондох зай б. Радиусууд нь ба 7 төвүүдийн хоорондох зай 4 в. Радиусууд нь 5 ба 3 төвүүдийн хоорондох зай бол хоёр тойргийн харилцан байршилыг тогтоо. а. R + r = d, 8 + = шүргэлцсэнтойрог б. R + r = d, + 7 = 8 4 огтлолцсон тойрог в. R + r = d, = Тойрог дотор орших тойргийн төвөөс ялгаатай А цэгийг дайрсан бүх цэгүүдээс хамгийн богино нь А цэгийг дайрсан диаметрт перпиндикуляр хөвч байна гэж батал. 47. ба 3 равиустай ерөнхий төвтэй концентр тойрог өгөгдөв. Гуравдагч тойрог нь дээрх тойргийг шүргэх бол О цэгээс гуравдагч тойрогт татсан шүргэгчүүдийн хоорондох өнцгийг ол. AOO R r 3 = KO = = = OAO π AO =, AOO = 3 sinα = =, OO AOB = AO α = 3 AOB =, Хариу : 6 AOO = 3 = Гипитенуз нь С байх тэгш өнцөгт гурвалжны 3 орой дээр төвтэй 5 C радиустай 3 тойрог байгуулав. Өгөгдсөн 3 тойргийг шүргэсэн боловч уг 3 тойргийг агуулаагүй дөрөвдөгч тойргийн радиусыг ол. C C R = 5 3C Хариу : R = C C OA = OB = OC = R + =, α өнцөг өгөгдөв. Уг өнцгийн талуудаас тус бүр О той тэнцүү хөвчүүдийг огтлох тойрог татав. Хөвчийн төгсгөлүүдийн хоорондох миннимум зайb бол тойргийн радиусыг ол. AM = CD = a, M = α, AC = b, R =? MA MB = MC MD, AM = MC, AMC адилхажуу 8 α α MAC = = 9, BAC = 8 MAC = 9b + α α α BC = AC + AB AC AB cos 9 + = a + b + ab sin α a + b + absin BC R = = α α sin 9 + cos 474. ABC гурвалжины урт тал нь BC байг. ВС = β, M цэгийг ВС дээр аьсан. ВАМ ба АСМ гурвалжнуудыг багтаасан тойргийн төвүүдийн хоорондох миннимум зайг ол. BC = b, OO =? BP = PM, MQ = QC b b OO PQ =, OO ABC - н АМ = H байхад b OO = PQ = 475. ABCD паралелиграмм өгөгдөв. AB = α, BC= β, ABC ба DAB гурвалжнуудыг багтаасан тойргуудын төвүүдийн хоорондох зайг ол. BO = OD, ABC = α AB = a, BC = b O O = BAD = 8 α? ( ) BO = a + b abcos 8 α BO = a + b + ab cosα = = = BOO BOD BAD 8 α 476.Тойрогт багтсан 4 өнцөгтийн эсрэг талууд нь харилцан перпендикуляр, нэгийнх нь урт a, a талд налсан өнцөг диагоналиараа α ба β өнцгүүдэд хуваагдана. 4 өнцөгтийн диагоналиудыг ол. a CD AB, CD =, CDB = α, R BDA = β, BAD = 9 α β, BAC = α, = CD a R = sin 9 α β = cos α + β CAD 9 α β ( ) ( ) a sin AC = R sin ( α + β ) = cos a cos BD = R sin ( 9 α β ) = cos ( α + β ) ( α + β ) ( α + β ) ( α + β ), 477. rрадиустай тойрог α өнцөгт багтав. R радиустай тойрог өнцгийн нэг талыг нэгдүгээр тойргийн шүргэсэн цэгт шүргэнэ. Хоёрдогч талыг А ба В цэгээр огтлоно. АВ хэрчмийн уртыг ол. OP = r, M = α, OO = R r, AO = O B = R AF = FB, BF = O B O F ( ( ) ) AB = O B O F = R r R r cosα α α α AB = 4 cos ( R r) R sin + r cos. 478.Адил хажуут АС суурьтай АВС гурвалжин өгөгдөв. О төвтэй R радиустай АВ цэгийг дайрсан тойрог ВС шулууныг В ба С цэгээс ялгаатай М цэгт огтолсон. О цэгээс АСМ гурвалжиныг багтаасан тойргийн төв О хүртлэх зайг ол. ABC = α, AO M = ACB = (9 α ) = 8 α A, B, M, О цэгүүд О төвтэй тойрог дээр оршино. OO = R. 479. Хавтгай дээр АBCD, BKLN гэсэн квадратууд байршжээ. Гэхдээ К цэг нь АВ хэрчмийн үргэлжлэл дээр В цэгийн цаана, N цэг нь BC цацраг дээр орших бол DL, AN шулуунуудын хоорондох өнцгийг ол. Бодолт: BN BC. DL ба AN шулуунуудын огтлолцлын цэг M BML = 9 ба BMD = 9. D, M ба L цэгүүд нэг шулуун дээр оршино. DMA = DCA = 45 учир нь нэг нумд тулсан өнцөг, LMN = 8 NBL = 35, M, N ба A цэгүүд мөн нэг шулуун дээр огшино, Иймд шулуунуудын хоорондох өнцөг Нагелийн TR. АВС гурвалжингууд АА, ВВ өндрүүд татав. О нь АВС гурвалжины багтаасан тойргийн төв бол А В ба ОС перпендикуляр гэж батал. ABC хурц өнцөгт, CAB = α, COB = α CB = 9 α, OCB + B AC = α + 9 α = 9 ABCгурвалжины өндөр CD нь CO шулуун дээр ABCD гурвалжиныг багтаасан тойргийн С цэгт татсан шүргэгч СК BCK = BAC = CA B CK A B OC CK = OC A B 48. Концентр тойрог өгөгдөв. Тус бүрдээ бага тойргийн шүргэгч байж байх том тойргийн перпендикуляр хөвчийг татав. Эдгээр хөвчүүд нь бие биенийгээ 3 ба 7 гэсэн хэсгүүдэд хуваав. Бага тойргийн радиус хэд вэ? Бодолт: AK = CK = 3, BK = DK = 7. M ба N цэг хөвчүүдийн дундаж цэг учир AM = 5, ON = KM = AM AK = 5 3 =. AM = 5, ON = KM = AM AK = 5 3 = 48.Концентр тойргийн радиусуудын 7 : 4 харьцуутай цагиргийн өргөн нь бол бага тойргийн радиусыг ол. AB =, OA = R, OB = r, AB = OA OB, OA OB = 7 4, 7x 4x =, 3x =, x = 4, OB = 4x = 6 хариу : Концентр тойрог тэдгээрийг огтолсон шулуун өгөгдөв. Энэ шулууны тойргуудын хооронд хашигдсан хэрчмүүд тэнцүү гэж харуул Нэг нь нөгөөгийнхөө дотор орших тойрог өгөгдөв. Эдгээрийн радиусууд 8 ба тойргуудын хоорондох хамгийн богино зай болтөвүүдийн хоорондох зайг тодорхойл. DC =, AB = 56 4 =, AO = + = 34, OA = 8, OO = 34 8 = Тэгш өнцөгт АВС гурвалжины ВС катетаар диаметр хийсэн тойрог АВ гиптонузыг К цэгт огтлов. Хэрэв BC = a AC = b бол ВСК гурвалжины талбайг ол. Бодолт: CB a = AB a + b 3 a a a b BCK = ACB = = S S ab a + b a + b a + b, 486. Гүдгэр 4 өнцөгт АВСD гий н хувьд CBD = 58, ABD = 44, CAD =? ABD = 44, CAD =? DBC = 58, ADC = 78 CD CD CAD =, CBD = = 58, CAD = CBD = 58 Хариу : CAD = А оройттой α өнцөг өгөв. Ямар нэгэн В цэгээс өнцгийн талууд руу татсан перпендикулярийн сууриудыг холбоход үүссэн хэрчмийн урт нь a бол АВ хэрчмийн уртыг ол. MAN = α MN = a AB =? Хариу : AB = asinα 488.О багтаасан тойргийн төв Jα α талыг шүргэсэн тойргийн радиус r α α талын шүргэсэн гадаад багтсан тойргийн радиус бол ОJ α = R + R r гэж батал. OJ = R + Rr гэж батал. a a BIM = α + β, IBM = BIM, IBM = IBC + MBC = IBC + CAM = β + α IM = BM, адил хажуут гурвалжин BIM, IBI α = ҮРГЭЛЖЛЭЛ БИЙ 9 489. Тойрогт АВ =α баac = β байх хөвч татав. В цэгийг агуулаагүй АС нумын урт нь AB нумаас дахин их бол тойргийн радиусыг ол. AB = AC, AB = a, AC = b, R =? AB C = = α, B = AB = α a b = = R sinα sin α b a sinα cosα = bsinα, cosα = a b 4a b = =, sin α 4 a a Хариу : a a a R = = 4a b 4a b 49.О бао төвтэй S, S тойргууд Н цэгт огтлолцов. О А шулуун нь S тойргийнк цэгт О А шулуун нь S тойргийг К цэгт тус тус огтлов. Тэгвэл О О А = К К А байна гэдгийг харуул. Бодолт: Адил хажуут гурвалжин O K A ба O K A AO K = AO K. O, O, K и K цэгүүд нэг тойрон дээр оршино. O O A = K KA.