Preview only show first 10 pages with watermark. For full document please download

Ce404 06 Syphon Hydraulics

   EMBED


Share

Transcript

 Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 Cross Drainage Works 1. Aqueducts: If the bed level of the channel is higher than H.F.L. of t he drain, the structure is an aqueduct. aqueduct. Otherwise, the structure is either syphon or culvert. 2. Culvert If there is no restriction downstream, the structure will have two slopes S1 and S2, then, the structure will be a culvert. 3. Syphon If there is any restriction downstream the structure will have three slopes, therefore the structure is a syphon. Hydraulic Design of Syphon Design a syphon with the following data a. Canal Discharge = 40 cumec Bed width = 18 m Full supply depth = 2.1 m Bed level = 250 m Side slope = 1½ H: 1 V b. Drain Flood discharge = 100 cumec Bed level = 251.8 m Depth = 1.45 m H.F.L. = 253.25 m Roadway 16 m Drain 44.5 m 1 Roadway 8m  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 Design 1. Drainage waterway Lacey’s Formula P  4.83 Q , P  wetted perimeter  4.83 100  48.3 m Total length of barrels  8  44.5  16  68.5  70 m Provide bed width of the drain at crossing  44.5 m High flood level of the drain= 253.25 m 2. Canal waterway Velocity of approach  Q  A  40 2 1.5  2.1  18  2.1  0.9 m s Maximum fluming is 40%, 0.4 18  7.2 m Let the canal waterway be reduced from 18 m to 7.3 m such that two barrels each 3.5 m with 0.3 m thick wall. 3.5 m 0.3 m Let the height of the barrel = 2.5 m V  Q  A Fr  40   2.29 m s 3.5  2.5  2 V  2.29  gD 9.81 2.5 V  2 ~ 3 m s   0.46  1   ~ 0.6   Fr  1,  0.4 The flow is subcritical in the barrel. 3. Head loss and bed levels at different sections: Provide 2 in 1 splay in contraction, and 3 to 1 splay in expansion, and 3 in 1 splay in expansion: Length of contraction  Length of expansion  18  7.3 2 18  7.3 2  2  10.7 m  3  16.05 m At section 4 Velocity head ha  V a2 2g  0.92 2  9.81 R.L. of bed = 250 m 2  0.041m 2.5 m  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 R.L. of water surface = 250+2.1=252.1 m R.L. of T.E.L. = 252.1+0.041 = 252.141 m At section 3 Provide water depth = 3 m Area of section  3  7.3  21.9 m 2 Velocity  Q  A  Velocity head  40 21.9 V 32 2g  1.83 m s  1.83 2 2  9.81  0.17 m Loss of head in expansion from section 3 to section 4  V32  V 42   1.832  0.92   K2    0.3    0.039 m g 2 2 9.81      El. of T.E.L. at section 3  252.141  0.039  252.18 m R.L. of water surface  252.18  0.17  252.01m R.L. of bed  252.01  3  249.01m  L  V   Head loss through barrels  1   f1  f 2   R  2 g  2 where,  f 1= constant for syphon mouth =0.08 for bell mouthed syphon    f 2  a  1  b  where a and b are constants depending on the  R  material of the surface of barrels. For cement plaster, a = 0.00316 and b = 0.1.  R   A P  2  3.5  2.5  3.5  2.5  2  2    f 2  0.00316  1  0.1    0.036 0.729  Assume length of syphon barrels  L= 70 m 2 70   2.29  h L   1  0.08  0.0036  0.729  2  9.81   0.381m At section 2 3  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 R.L. of T.E.L.  R.L. of T.E.L. @ section 3 + head loss through barrels  252.18  0.381  252.561m R.L. of water surface  252.562  0.17  252.39 m R.L. of bed  252.39  3  249.39 m say 249.40 m At section 1  V22  V 12  h L in contraction transition  K 1    2g   1.832  0.92   0.2    0.026 m  2 9.81   R.L. of T.E.L.  252.561  0.026  252.587 m R.L. of water surface  252.587  0.041  252.546 m R.L. of bed  252.546  2.1  250.446 m 4  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 4. Transitions Because the depth is varying through the transition, Metra’s and Chutervedi’s formulae for transitions are not applicable, therefore Hinds’ method shall be used. The expansion transition is explained in more details, please refer to section 4.b. a. Contraction transition  y  C x 2  y1    x1  w.s. @ sec.1 - w.s. @ sec. 2 2 252.546  252.4  0.073 m 2 length of transition 2  10.7 2  5.35 m Substitute y1 and x1 in the equation to find C  0.073  C  5.35 2 C   0.0026  y  0.0026 x 2 Contraction Transition [1] [2] Dist.  y ( m) 0.0026 x 0.00 0.0000 [3] [4] [5] El. of  W.S. ( m) El. of  T.E.L. ( m) Velocity head hv ( m) Linear Interp. [4]-[3] (2g hv) 252.500 0.017 1.83 2 252.400 [6] [7] Velocity V ( m/s) 1/2 Side slope  s [8] Area 2 A ( m ) [9] Bed level ( m) Linear Interp. 0:1 21.86 249.40 [10] [11] Depth Bed width  D ( m) B [3]-[9]  A /   D - s D 3.0 7.30 2.50 7.53 5.35 9.06 8.00 14.56 10.70 0.0000 252.546 252.587 0.040 0.90 b. Expansion transition  y1  252.1  252.01 2  x1  16.05 C    y1 2  x 2   0.045 m  8.025 m 0.045  8.025 2  y  0.0007 x 2 5 1.5:1 44.44 250.45 2.1 18.00  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 252.1  y1 w.s. El. 252.01 PROFILE 8.025 16.05 Bed level     m    h    t    d    i   w    d   e    B  x    0    0    3  .    3  .    7    7 0 3    9    0  .    8 6    6    1  .    9    0    7  .    0    1 8.02 10    2    9  .    3    1    0    0  .    8    1 13 16.05 m PLAN Expansion Transition [1] [2] Dist.  y ( m) 0.0007 x [3] [4] [5] El. of  W.S. ( m) El. of  T.E.L. ( m) Linear Interp. Velocity head hv ( m) [4]-[3] (2g hv) 2 [6] [7] Side slope  s Velocity V ( m/s) 1/2 [8] [9] Area 2 A ( m ) Bed level ( m) Linear Interp. [10] [11] Depth Bed width  D ( m)  B [3]-[9]  A /   D - s D 0.00 0.0000 252.010 252.180 0.170 1.826 0:1 21.86 249.01 3.00 7.30 3.00 0.0063 252.016 252.173 0.157 1.753 0.28:1 22.73 249.20 2.82 7.29 6.00 0.0252 252.035 252.165 0.130 1.596 0.56:1 25.48 249.38 2.66 8.09 8.02 0.0450 252.055 252.161 0.106 1.442 0.75:1 28.37 249.50 2.56 9.16 10.00 0.0252 252.075 252.156 0.081 1.262 0.93:1 31.75 249.63 2.44 10.71 13.00 0.0063 252.094 252.150 0.056 1.051 1.21:1 38.10 249.81 2.28 13.92 16.05 0.0000 252.100 252.140 0.040 0.886 1.5:1 44.44 250.00 2.10 18.00 5. Pucca floor Provide pucca floor in half the transition length in the upstream and 3/4 the length of the expansion transition in the downstream. Length of pucca floor u.s.  10.7 2  5.35 m say 6.0 m 6 th Pucca Floor  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 6. Uplift pressure on the barrel floor and pucca floor a. Static uplift pressure i. At the bottom of barrel floor Level of bottom of barrel floor  251.8   0.6  0.3  2  2.5   248.1 m Static head  250  248.1  1.9 m of water ii. At the downstream end of barrel Floor level  249.01m Assume floor thickness  249.01  1.5  247.51 m Static head  250  247.51  2.49 m of water b. Seepage head on the barrel floor and the pucca floor Seepage head  H.F.L. in the drain  W.T. in the region (canal bed level)  253.25  250  3.25 m Total seepage path  0.6  2   0.3  2  2.5  1   8  13  13  11.3 m i. At the bottom of barrel floor Seepage path to bottom of barrel floor  0.6  2  3.11  4.3 m  H 1 11.3  4.3  3.25 11.3 , H1  2.01m of water Total uplift in the barrel  1.9  2.01  3.91m of water Max. Seepage 3.25 head  H 1  H 2 4.3 6.97 Total seepage length = 11.3 m ii. At d.s. end of barrel floor 7  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 Seepage path  0.6  2  3.1  8 3  6.97 m  H 2 4.3  3.25 11.3 , H 2  1.25 m of water Total uplift  2.49  1.25  3.74 m of water Floor thickness  3.74 2.2  1.7 m say 2.0 m The remaining length of transition shall be provided with 0.8 m  0.8 m  0.6 m C.C. blocks over 0.6 m inverted filter. 4 rows of blocks resting on 1.2 m deep toe wall at ends. 8  Hydraulic Structures –  Hydraulic Design of Syphon February 1, 2011 9