Transcript
**************************************DESIGN OF FOOTING************************* Carmel B. Sabado Prof. Geronides P. Ancog CE-162 10-Aug-09 I.Column details: 1.(type the letter corresponding to the shape of column) a A. Square B. Rectangular C. Circular 2.Dimensions of column: (put the values in the green colored spaces provided) a=b= 600 mm *length and width of the column are equal *not applicable *not applicable *not applicable
II. Information Needed 1.Material Properties: f'c= 27.5 Mpa fy= 414 Mpa 2. Load to be carried: 1580 KN PDL = PLL = 1200 KN 3. Allowable soil Pressure: 285 Kpa 4.Shape of Footing to be Designed: (type the letter corresponding to the shape of footing) A. Square B. Rectangle
length= width= B= 5. Diameter of Bar Reinforcement: rebars long φb= rebars short φb= 6. Assumed Footing weight:
3.3 4.4 m 2.4 m 2.4 m 25 30 mm 20 mm
b
*longer dimension of the footing *shorter dimension of the footing
*reinforcement in the longer dimension *reinforcement in the shorter dimension
7 %Qu
III. Design Computations: 1.Dependable Ultimate Soil Bearing:
1. 2 D L1.6 L L qa D LL L
=
391.21 kPa
Q u =1 . 2 DL 1 . 6 LL
=
3816 kPa
q u= 2.Required Footing Area:
10.44 m² Actual Footing Area 3. Net soil Pressure:
=
10.56 m²
*design footing area is okay
369.8 kPa
4. Critical Section of the Footing: 1. Footing depth as controlled by BEAM SHEAR:
1 B−a vc = f c ' −d 6 2 B−a V u =q n L v =q n −d 2
Lv =
φv c =
Vu bd
; d=
=
0.87 Mpa
a= b=
600 mm 1000 mm
* consider a 1 meter strip
V u *with these working equations we can get the value of d: φv c b
B−a −d 2 d= φv c b=1000 qn
in the short dimension trial d: computed d: 320 288.71 304.35 296.49 300.42 298.45 299.44 298.94 299.19 299.06
in the long dimensio trial d: 678 643.14 634.38 632.18
2. Footing Depth as controlled by Punching Shear
vc =
1 f c' 3
=
1.75 Mpa
Vu = qn[Af-(a+d)²] b = 4(a+d)
φv c =
Vu bd
; d=
[
qn A f − d=
Vu φv c b
a2d 1000
] 2
x 1000
*with these working equations we can get the value of d:
φv c [ 4 ad ] trial d:
computed d: 452.52 471.15 473.19 473.4 473.42 ***beam shear controls!
500 476.26 473.71 473.45 473.42
Reinforcements in the long Direction: Ll'= (L-a)/2= 1.9 MuL = qn(Ll')²/2= 667.48 Trial dl= 680 mm
5.Design as Singly Reinforced Rectangular Beam:
[
ρ min =
1.4 f c' , f y 4f y
]
Reinforcements in the short Direction: Ls' = (B-a)/2= 0.9 Mus = qn(Ls')²/2= 149.77 Trial ds=dl-((φbl/2)+(φbs/2)) 655
use b=1000mm 0
min
ρ max =. 75
ρ=
[
[
. 85 f c ' β 1 . 003 E s
]
f
y
. 003 E s f
[
2R u 2ωR u . 85 f c ' 1 = 1− 1− 1− 1− fy .85 f c ' ω fy
y
]
]
=
=
Ru= ρ= As= Rebars= =
N=int([B or L]As/Ao+1)
0.02
in the long direction: 1.6 0 ok! 2731.61 mm2/mm 30 mm 10 bars
Check validity of assumed footing weight of : Total depth : h= d+100 = Wf = (1.40) B² h wc = Actual footing weight : Assumed footing weight : %Qu=
in the short direction: 0.39 0 okay! 618.84 mm2/mm 20 mm 9 bars
780 mm 272.14 Kn 267.12 Kn
Wc=
revision should be done!
23.6 Kn/m3
6. Short Rebars Distribution: Ast= As=Ast(2/(L/B)+1)= central strip= No. of bars at the outer strip=
2827.43 mm2 1995.84 mm2 7 2
-20 mm φbars -20 mm φbars
7 20mm φbars
2
780 mm
2.4 meters
0.8 meters
END OF THE PROGRAM!!!=) ******NOTHING FOLLOWS******
in the long dimension computed d: 608.27 625.63 629.99 631.08
mm
20mm φ bars
680 mm 100 mm
FOOTING REBARS:
#REF! #REF!
100 mm
0 #REF! #REF!
#REF! #REF! #REF!
FOOTING DIMENSION:
#REF! #REF!
0m #REF!
#REF!
COLUMN DIMENSION: #REF!
#REF!
0m #REF!
#REF! #REF!
0 mm
100
100 mm
mm #REF! #REF!
#ΡΕΦ! #ΡΕΦ! #ΡΕΦ!
#REF! #REF! #REF!
100 mm
#REF!
mm
100