Preview only show first 10 pages with watermark. For full document please download

Elektroniczna Aparatura Medyczna Akceleratory Biomedyczne

Akceleratory biomedyczne Akcelerator – urządzenie służące do przyspieszania cząstek elementarnych lub jonów do prędkości bliskich prędkości światła. Cząstki obdarzone ładunkiem elektrycznym są przyspieszane w polu elektrycznym. Do skupienia cząstek w wiązkę oraz do nadania im odpowiedniego kierunku używa się odpowiednio ukształtowanego pola magnetycznego lub elektrycznego.

   EMBED


Share

Transcript

1 Elektroniczna aparatura medyczna Akceleratory biomedyczne2 Akceleratory biomedyczneAkcelerator – urządzenie służące do przyspieszania cząstek elementarnych lub jonów do prędkości bliskich prędkości światła. Cząstki obdarzone ładunkiem elektrycznym są przyspieszane w polu elektrycznym. Do skupienia cząstek w wiązkę oraz do nadania im odpowiedniego kierunku używa się odpowiednio ukształtowanego pola magnetycznego lub elektrycznego.3 Historia Zaledwie w kilka miesięcy po odkryciu w roku 1895 przez Roentgena promieniowania X rozpoczęto w Niemczech oraz w USA radioterapeutyczne napromieniowania pierwszych pacjentów. Źródłem tego promieniowania były pierwotnie lampy rentgenowskie gazowe, a od 1913 r. próżniowe z żarzoną katodą wolframową. Pierwsze produkowane seryjnie lampy tego typu mogły pracować przy napięciu szczytowym 140 k i natężeniu prądu 5 mA. Promieniowanie X generowane przez te lampy cechowała niestety niewielka przenikliwość.4 Rozkład głębokości był tu szczególnie niekorzystny, ponieważ dawka maksymalna przypadała na powierzchnię skóry, a następnie szybko spadała w zależności od głębokości. Dlatego już wtedy rozpoczęto poszukiwania innych źródeł twardszego promieniowania, zwracając uwagę na izotopy promieniotwórcze. Izotop 226Ra emitujący promieniowanie gamma o energiach 0,24-2,20 MeV stosowany był w pierwszych bombach radowych, których powstało może kilkanaście ze względu na małą dostępność i wysoką cenę radu.5 Już w latach 30-tych po opracowaniu cyklotronu zwrócono uwagę na możliwości zastosowania akceleratorów do radioterapii - liczbę potencjalnych pacjentów oceniano wówczas w samych USA na 100 tyś. rocznie. Na początku lat 50-tych rozpoczęła się era radioterapeutycznych bomb kobaltowych. Izotop 60Co emitujący promieniowanie gamma o energiach 1,17 MeV i 1,33 MeV umożliwiał osiąganie rozkładu głębokowościowego znacznie lepszego w porównaniu z rozkładem promieniowania X emitowanego przez lampę rentgenowską. Dawka głębokościowa osiągała tu maksimum na głębokości ok. 5 mm pod powierzchnią skóry, co zapewniało znaczne zmniejszenie dawki naskórnej przy napromieniowywaniu warstw położonych głębiej.6 Radykalne zwiększenie energii promieniowania fotonowego stało się możliwe dzięki opracowaniu przez D.W. Kersta ( w USA ) akceleratora nazwanego betatronem, napromieniowania pierwszych pacjentów rozpoczęto w 1949 r. stosując promieniowanie fotonowe generowane przez elektrony o energii 20 MeV. Rozkład dawek głębokościowych dla promieniowania X 200kV, promieniowania gamma 60Co (1,17 MeV i 1,33 MeV) oraz promieniowania X z betatronu 22 MeV 67 Betatrony odegrały znaczącą rolę w rozwoju radioterapii, dostarczając promieniowania fotonowego o znacznie lepszych charakterystykach od promieniowania generowanego przez lampy rentgenowskie i źródła radioizotopowe. Wady betatronów - jak np. duży ciężar utrudniający manewrowanie, stosunkowo niskie natężenia wiązki promieniowania X, a także niewielkie wymiary napromieniowywanego pola - spowodowały, że w połowie lat 70-tych produkcja betatronów została wstrzymana. 78 Widok betatronu radioterapeutycznego produkcji Brown Boveri z lat 60-tych (Szwajcaria):9 Postępy osiągnięte w czasie II wojny światowej w dziedzinie megatronów dla techniki radarowej umożliwiły wykorzystanie generatorów mikrofalowych do przyspieszania elektronów dla potrzeb radioterapii. W Anglii pierwszy akcelerator o tzw. fali bieżącej przedstawił w 1946 r. D.W.Fry. Na tej podstawie C.W.Miller skonstruował pierwszy brytyjski stacjonarny akcelerator liniowy w.cz. na którym pierwszego pacjenta napromieniowano w 1953 r. W tym samym czasie rozpoczęto intensywne prace w USA, gdzie pierwsze napromieniowania rozpoczęto na początku 1956r. Firma Varian Assiciates zbudowała pierwszy prototyp akceleratora izocentrycznego, umożliwiającego pełny obrót wokół pacjenta w 1962 r. 910 Akcelerator liniowy w. czAkcelerator liniowy w.cz. Clinac 20 z pochłaniaczem wiązki firmy Varian (USA):11 W połowie lat 60-tych rozpoczęła się w radioterapii era akceleratorów liniowych w.cz., które szybko zdominowały światowy rynek akceleratorów medycznych. Typowe wartości mocy dawek przypadały dla nich na zakres cGy/min ( rad/min ), przy maksymalnych wymiarach napromieniowywanych pól sięgających do 40x40 cm, zaś dla betatronów 40 cGy/min ( 40 rad/min ) przy odległości 100 cm i energii 22 MeV oraz wymiary pól do 12,5x12,5 cm. Terapia akceleratorowa może być prowadzona w sposób statyczny - czyli podczas właściwego napromieniowania głowica aparatu terapeutycznego jest nieruchoma względem pacjenta, bądź przy zastosowaniu współczesnych akceleratorów radioterapeutycznych typowym rozwiązaniem jest terapia obrotowa, podczas której głowica akceleratora dokonuje obrotu wokół pacjenta w pełnym kącie 360°. 1112 Charakterystyki izodoz dla promieniowań generowanych przez aparat rentgenowski 200 kV (A), bombę kobaltową (B) oraz wiązkę elektronów przyspieszonych do energii 25 MeV i poddanych następnie konwersji na promieniowanie X 25 MV (C). 1213 Wraz ze wzrostem energii fotonów obserwuje się coraz lepsze ujednolicenie rozkładu stosunku dawki głębokiej w osi wiązki do dawki poprzecznej (podskórnej) dla pola napromieniowanego: a) o średnicy 15 cm b) o średnicy 25 cm. W obu przypadkach wraz ze wzrostem energii fotonów obserwuje się coraz lepsze ujednolicenie tego rozkładu. 1314 Innym korzystnym aspektem uwidaczniającym się w miarę wzrostu energii promieniowania X jest zmniejszenie się absorpcji względnej dla różnych rodzajów tkanek ( rys.1.9. ). Przy małych energiach w zakresie 0,1-1,0 MV szczególnie narażona jest tkanka kostna pochłaniająca wówczas znacznie więcej energii od napromieniowywanej tkanki nowotworowej. 1415 Tendencja do stosowania coraz większych energii promieniowania fotonowego uwidoczniła się szczególnie na początku lat 70-tych, kiedy to uruchomiono produkcję akceleratorów na energie maksymalne sięgające do MeV. Początkową euforię ostudziły jednak obserwacje różnych niekorzystnych zjawisk, a przede wszystkim generowania w tym zakresie energii zarówno w samym organizmie pacjenta jak i w pomieszczeniu radioterapeutycznym szkodliwych neutronów. Spowodowało to pewne zmniejszenie energii maksymalnych, które obecnie nie przekraczają MV. 1516 Proces przyspieszania cząstek naładowanych można zrealizować w najprostszy sposób, stosując układ dwóch elektrod, pomiędzy którymi panuje różnica potencjałów elektrostatycznych. Aby cząstka została przyspieszona w sposób skuteczny, w przestrzeni międzyelektrodowej musi istnieć próżnia o takiej wartości, ażeby średnia droga na zderzenie przyspieszanej cząstki z cząsteczkami resztkowymi gazu była znacznie większa od odległości między elektrodami. 1617 Akcelerator jednostopniowy:Akcelerator z rysunku powyżej jest układem jednostopniowym - energia maksymalna cząstek odpowiada napięciu maksymalnemu dostarczanemu przez generator (100 kV do 30 MV). Jeżeli napięcie generatora wysokonapięciowego zasilającego komorę przyspieszającą ma wartość V, a cząstka ma ładunek q, uzyskuje ona wówczas energię kinetyczną Ek=qV. W przypadku elektronu Ek=eV, stąd 1eV=1,6·10-19 J (1MeV=1,6·10-13 J)18 Osiągnięcia radiotechniki, techniki radarowej (radiolokacyjnej) i telewizyjnej, a także bardzo szybkie postępy w generowaniu mikrofal stworzyły podstawy rozwoju przyspieszania cząstek naładowanych za pomocą składowej elektrycznej E pola elektromagnetycznego wielkiej częstotliwości. Metody te nadają się zarówno do przyspieszania lekkich elektronów, jak i ciężkich jonów, umożliwiając osiąganie energii w zakresie od rzędu MeV do energii GeV. 1819 W akceleratorach radioterapeutycznych typowo stosuje się częstotliwości 3 GHz, czyli długość fali 10 cm. Ponieważ wymiary liniowe rezonatorów są proporcjonalne do długości fal, w przypadku akceleratorów elektronowych w.cz. można stosować rezonatory o znacznie mniejszych wymiarach i o stosunkowo prostej budowie. Przy zasilaniu energią 3 GHz typowe wymiary pojedynczego rezonatora wynoszą: średnica 10 cm i długość 2,5 do 5 cm. Na rys poniżej widać zespół rezonatorów cylindrycznych tworzących falowód. 1920 Powstawanie fal przyspieszających w akceleratorze elektronowym w.cz.:Widoczny obraz przesuwa się wzdłuż rezonatorów akceleratora w kierunku osiowym z prędkością tzw. fali bieżącej. Powstawanie fal przyspieszających w akceleratorze elektronowym w.cz.: a) fala bieżąca, b) fala stojąca 2021 Akceleratory radioterapeutyczne zasilane są mocą w. czAkceleratory radioterapeutyczne zasilane są mocą w.cz. generowaną przez lampy mikrofalowe – magnetrony i klistrony. Impulsowe pole elektryczne przykładane pomiędzy katodę i anodę powoduje ruch elektronów wyemitowanych w wyniku termoemisji w kierunku anody. Kombinacja pola magnetycznego i impulsowego pola elektrycznego sprawia, że ten ruch odbywa się po spirali, a elektrony przechodząc do wnęk rezonansowych oddają tam swoją energię w postaci energii w.cz. Typowy magnetron pracujący w paśmie 3 GHz (S) może generować impulsy w.cz. o mocy szczytowej 2-5 MV. Magnetrony mają znacznie mniejsze wymiary, są lampami samowzbudnymi, nie wymagają dodatkowego układu wzbudzającego w.cz., są też znacznie tańsze, ale mniej trwałe. Stosuje się je zwykle do zasilania akceleratorów o energiach 4-20 MeV (mniejsze i średnie energie). 2122 Akceleratory elektronowe do terapii rutynowejPrzy leczeniu chorób nowotworowych radioterapia bierze na siebie wielką odpowiedzialność, ponieważ z jednej strony stanowi dobrą metodę leczenia, z drugiej jednak strony jest działaniem groźnym, nieodwracalnym w taki sam sposób jak zabieg chirurgiczny oraz trudnym do zaplanowania i przeprowadzenia. Zadaniem każdego zabiegu radioterapeutycznego jest podanie optymalnej ściśle określonej dawki promieniowania jonizującego do obszaru lub obszarów, które mają być naświetlone, tak aby dawka była możliwie równomiernie rozłożona w obszarze przeznaczenia i maksymalnie obniżona poza tym obszarem.23 a) Metody konwencjonalne z wiązkami jednorodnymib) Metody niekonwencjonalne z wiązkami niejednorodnymi24 Rozwój budowy liniowych akceleratorów radioterapeutycznych2425 a). konstrukcje stosowane w połowie lat 50-tych pracowały w tzwa) konstrukcje stosowane w połowie lat 50-tych pracowały w tzw. Układzie liniowym głowicy, osiągany wówczas liniowy gradient energetyczny 4MeV/m. uniemożliwiał pełny obrót struktury wokół stołu; b) lata 60-te poziome ( w przybliżeniu ) usytuowanie stosunkowo długiej struktury przyspieszającej umożliwiającej osiąganie wysokich energii, która współpracowała z magnesem zakrzywiającym wiązkę o kąt ok. 90o, dzięki czemu możliwe było znaczne skrócenie pionowego wymiaru głowicy i pełny obrót wokół stołu - zachowane stosunkowo niewysokie izocentrum; c) początek lat 70-tych nowa generacja z zastosowaniem magnesów achromatycznych, zakrzywiających wiązkę o kąt ok , zastosowanie tych magnesów polepszyło parametry wiązki i stabilność pól terapeutycznych, zestawienie na rys.3.27; d) zastąpienie układu o fali bieżącej układami o fali stojącej umożliwiło zwiększenie gradientów linowych do MeV/m., co dało możliwość znacznego skrócenia struktury przyspieszającej.26 Zestawy układów magnetycznych do wychylenia wiązki:2627 Układ ogólny akceleratora:2728 Widok struktury przyspieszającej akceleratora:2829 Narodowe Centrum Badań JądrowychNarodowe Centrum Badań Jądrowych powstało 1 września 2011 r. w efekcie włączenia Instytutu Energii Atomowej POLATOM do Instytutu Problemów Jądrowych im. Andrzeja Sołtana. Centrum produkuje także m.in. radiofarmaceutyki oraz urządzenia dla rozmaitych gałęzi nauki i gospodarki, w tym medycyny. Centrum tworzy infrastrukturę informatyczna i laboratoryjną niezbędną dla wsparcia eksperckiego programu budowy energetyki jądrowej w Polsce. Narodowe Centrum Badań Jądrowych jest jednym z największych instytutów naukowych w Polsce, dysponującym m.in. jedynym w Polsce jądrowym reaktorem badawczym Maria. 2930 Narodowe Centrum Badań JądrowychBuduje podsystemy największych akceleratorów na świecie oraz produkuje akceleratory dla medycyny, przemysłu i nauki. Opracowuje i produkuje nowe radiofarmaceutyki - jednym z wiodących w świecie. Współpracuje z czołowymi instytutami - w tym z CERN-em - największym laboratorium naukowym na świecie. Prowadzi badania detektorów promieniowania jonizującego i materiałów do ich produkcji dla największych producentów i laboratoriów naukowych. Buduje unikalną elektronikę do detektorów, m.in. układy i systemy dla największego urządzenia badawczego stworzonego przez człowieka – akceleratora LHC w Genewie. 3031 Akcelerator medyczny Coline 10:Spełniający wymagania najnowszych norm bezpieczeństwa akcelerator medyczny Coline 10 umożliwia napromienianie wiązkami fotonów i elektronów o energiach od 6 do 10 MeV. 3132 Akcelerator medyczny Coline 4:Niskoenergetyczny akcelerator Coline 4 zaprojektowany został z myślą o skutecznym napromienianiu raka piersi, głowy i szyi. Jego przeznaczenie i zwarta konstrukcja sprawiają, że zastępuje bomby kobaltowe, zapewniając mniejszą dawkę naskórną, korzystniejszy rozkład izodoz. 3233 Zakład Aparatury Jądrowej ZdAJ-HITECjest częścią Narodowego Centrum Badań Jądrowych. Specjalizacją już od ponad 30 lat są precyzyjne akceleratory elektronów, szczególnie akceleratory przeznaczone do terapii onkologicznej. Niektóre z opracowanych technologii zostały też zastosowane w pracach badawczych prowadzonych w Europejskim Centrum Badań Jądrowych (CERN) w Genewie w Szwajcarii. 3334 Zakład Aparatury Jądrowej ZdAJ-HITECProdukcja i usługi: akceleratory dla medycyny, przemysłu i rolnictwa rentgenowskie symulatory radioterapii onkologicznej stoły terapeutyczne dla onkologii drzwi osłonowe do bunkrów i pomieszczeń rtg detektory promieniowania jonizującego implantatory jonów aparatura kontrolno-pomiarowa do ochrony środowiska (powietrza i wody) Dystrybucja aparatury dozymetrycznej i wyposażenia urządzeń do terapii promieniowaniem Projektowanie i koprodukcja specjalizowanych obiektów budowlanych dla szpitali onkologicznych 34