Preview only show first 10 pages with watermark. For full document please download

Holocene Palaeoenvironmental Evolution In The São Paulo State (brazil), Based On Anthracology And Soil δ13c Analysis

Holocene palaeoenvironmental evolution in the São Paulo State (Brazil), based on anthracology and soil δ13C analysis

   EMBED


Share

Transcript

  1  The Holocene  13,1 (2003) pp. 73–81 231234567891011121318192526 27  Holocene palaeoenvironmental evolution 28  in the Sa˜o Paulo State (Brazil), based on 29  anthracology and soil   13 C analysis 30  R. Scheel-Ybert, 1 * S.E.M. Gouveia, 2 L.C.R. Pessenda, 2 31  R. Aravena, 3 L.M. Coutinho 4 and R. Boulet 5 32  ( 1  Laboratoire de Pale´ oenvironnements, Anthracologie et Action de l’Homme 33  (UMR CNRS 5059), Institut de Botanique, Universite´  de Montpellier II, 163 rue 34  Auguste Broussonnet, 34090 Montpellier cedex, France;  2  Laborato´ rio de  14 C, 35  Centro de Energia Nuclear na Agricultura, Universidade de Sa˜ o Paulo, Caixa 36  Postal 96, 13400–970 Piracicaba, SP, Brazil;  3  Laboratory of Environmental 37  Isotopes, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada; 38 4  Departamento de Ecologia, Universidade de Sa˜ o Paulo, Caixa Postal 11461, 39  05422–900 Sa˜ o Paulo, Brazil;  5  Instituto de Geocieˆ ncias, Universidade de Sa˜ o 40  Paulo, 01498–970 Sa˜ o Paulo, Brazil) 41  Received 25 January 2001; revised manuscript accepted 23 January 2002 42 Abstract:  This paper presents a reconstruction of the Holocene palaeoenvironmental evolution in the centralSa˜o Paulo State (Brazil) based on anthracological analyses, in association with soil isotopic composition (   13 C)and radiocarbon dating from four sites. Anatomical identification of charcoal particles allows the reconstitutionof past plant associations, and consequently of the vegetation and climate history. Rather precise interpretationsmay be achieved when associating anthracology and soil    13 C analysis. In the early Holocene, climate wasdry and an open  cerrado  vegetation (savanna) covered most of this area. A  cerrada˜ o  (forested savanna) or asemideciduous forest existed in the more humid localities. After 3500/3000  14 C yr BP the climate was morehumid, similar to the present, leading to the establishment of forested vegetation in all the studied sites. Com-parison of these results with various palaeoenvironmental studies carried out in the Brazilian phytogeographicalzone of   cerrado  and semideciduous forest suggests that at least its greater part presented a similar trend inthe climatic evolution during the Holocene. This phytogeographical zone presented a dry climate during theearly Holocene, then a more humid climate during the late Holocene. Climatic conditions similar to the presentappeared from 5000 to 1000 yr BP, depending on the site. 43 Key words:  Palaeoenvironment, palaeoclimate, anthracology, charcoal, savanna, soil isotopic composition,oxygen isotopes, Brazil, Holocene. 596061  Introduction 62  Charcoal fragments are frequent in Brazilian soils. They are 63  present in the savannas of central Brazil, e.g., in Sa˜o Paulo 64  (Penteado, 1968; Coutinho, 1981; Scheel  et al ., 1995; Melo  et al ., 65  1996; Gouveia  et al ., 1999) and Minas Gerais States (Vernet 66  et al ., 1994; Pessenda  et al ., 1998), but also in areas presently 67  occupied by dense evergreen forests (Soubie`s, 1980; Sanford 68  et al ., 1985; Servant  et al ., 1989). Many charcoal horizons dated 69  from the late Pleistocene and the Holocene have also been found 17  *Author for correspondence (e-mail:  rita@s cheel. com ) 1  ©  Arnold 2003 2  10.1191/0959683602hl596rp 1  HOL: the holocene 2  16-10-02 07:35:00 Rev 16.04x HOL$$$596P 70 in Amazonian French Guyana (Tardy, 1998). These vestiges, 71 mostly recording natural fires, are the result of dry periods and 72 suggest the occurrence of climatic changes in the past. 73 Many palaeoenvironmental studies, mostly based on palynolog- 74 ical analyses, have shown that important climatic oscillations 75 affected the Brazilian territory during the late Quaternary (see, for 76 example, Absy  et al. , 1991; Oliveira, 1992; Ledru  et al ., 1995; 77 Ferraz-Vicentini and Salgado-Labouriau, 1996). The climate in 78 different Brazilian regions seems to have evolved distinctly, since 79 many of these oscillations were not synchronous, or divergent. 80 For instance, the late Holocene is characterized by rising humidity 81 in the Amazon region (Absy  et al ., 1991) and in southern Brazil  1  74  The Holocene  13 (2003) 2382  (Behling, 1996), both after  c.  3000 yr BP, while in the north- 83  eastern  caatinga  there is a marked decline in moisture levels after 84  c . 4000 yr BP (Oliveira  et al ., 1999). A signi fi cant effort in new 85  studies and the use of new techniques might improve our knowl- 86  edge of the Brazilian palaeoenvironmental history and eventually 87  improve our understanding of present and future climatic changes. 88  Microscopic charcoal found in soil or in lake sediments have 89  long been used to reconstruct  fi re histories and to postulate cli- 90  matic changes (Byrne  et al ., 1977; Salgado-Labouriau and Ferraz- 91  Vicentini, 1994; Piperno, 1997; Behling, 2000; Haberle and 92  Ledru, 2001), but they cannot be used to reconstruct the veg- 93  etation history. 94  The occurrence of macroscopic charcoal (  0.5 mm) in soils 95  provides solid evidence for local  fi re in fl uence and can be used 96  to identify  fi re-prone areas with high spatial precision (Ohlson 97  and Tryterud, 2000). Anatomical identi fi cation of the charcoal 98  particles (anthracological analysis) also allows the reconstitution 99  of past plant associations, of the vegetation history, and conse- 100  quently of palaeoclimate. 101  Identi fi cation of ancient charcoal is based in the analysis of the 102  wood anatomy, which is very well preserved after carbonization. 103  Taxonomic determination, frequently at genus level, is quite 104  accurate. In the tropics, only charcoal pieces over 4 mm are usu- 105  ally analysed. Smaller fragments are normally impossible to ident- 106  ify, because in general they do not present a suf  fi ciently large set 107  of anatomical characters (Scheel-Ybert, 2001). 108  Anthracological work applied to soils is still rare, but some 109  studies have already allowed reconstruction of the vegetation his- 110  tory for the late Pleistocene and the Holocene, e.g., in sites from 111  Australia (Hopkins  et al ., 1993), France (Carcaillet, 1998) and 112  French Guyana (Tardy, 1998). 113  Study of the isotopic composition of soils also allows deduction 114  of the plant cover in a site, since plants of different photosynthetic 115  pathways have distinct carbon stable-isotope values. This analysis 116  is based on the determination of     13 C values of soil organic matter 117  (SOM).    13 C values of C 3  plants (shrubs and trees in general) 118 vary between – 32 ‰  and – 20 ‰  PDB, while C 4  plants (grasses) 119  range from  – 17 ‰  to  – 9 ‰  (Boutton, 1991).    13 C analysis at differ- 120  ent depths in soil pro fi les can characterize transitions between C 3 - 121  and C 4 -dominated vegetation types.  14 C dating of charcoal 122  samples characterizes the events chronology. 123  This study presents results on the Holocene climatic history in 124  the Sa ˜ o Paulo State, based on anthracological analysis, soil iso- 125  topic composition analysis and charcoal radiocarbon dating from 126  four sites. It supports and completes the results already obtained 127 by Gouveia et al . (1999; 2002), who presented palaeoenvironmen- 128  tal reconstruction and inferred climate changes during the late Ple- 129 istocene and the Holocene in southeastern and central-western 130  Brazil, based principally on isotopic approaches, and Gouveia and 131  Pessenda (2000), who studied the role of biological remount of  132  soil matter and colluvium in the formation of ferrasols of Sa ˜ o 133  Paulo State. 134  Previous work 135  Palaeoenvironmental investigations are still rare in the Sa ˜ o Paulo 136  State. However, various palaeoecological studies exist for the 137  same phytogeographical zone, specially in southern and central 138  Brazil. They are summarized in Figure 1. 139  At Piracicaba (22 ° 43   S – 47 ° 38   W), the analysis of SOM car- 140  bon isotopes showed more enriched    13 C values (around  – 16 ‰ ) 141  at the deeper part of the pro fi les and more depleted (around  – 142  26 ‰ ) at the upper part. These results suggest a dry period and 143  the presence of grasses before  c . 3500 yr BP, and an increasing 144  in humidity thereafter (Pessenda  et al ., 1998). 145  In Sa ˜ o Paulo City, a dry climate has been identi fi ed around 1  HOL: the holocene 2  16-10-02 07:35:00 Rev 16.04x HOL$$$596P 146 4700 yr BP, characterized by high percentages of grass pollen 147 in peat-bog samples from the Vale do Anhangabau ´  (Takiya and 148 Ybert, 1991). 149 In Lago da Serra Negra (19 ° 00  S – 46 ° 50  W) a dry phase, with 150 cerrado  vegetation, is identi fi ed from the early Holocene to 5000 151 yr BP, followed by a more humid climate and by the establish- 152 ment of the semideciduous forest (Oliveira, 1992). 153 In Salitre (19 ° 00   S – 46 ° 46   W), pollen analysis allowed the 154 identi fi cation of two phases of increasing  cerrado  vegetation dur- 155 ing the late Pleistocene and the Holocene: 11000 – 10000 and 156 5500 – 4500 yr BP. The later interval is characterized by the author 157 as arid. Between 10000 and 8000 yr BP climate would be cold 158 and humid and an  Araucaria  forest would be present on the site. 159 Between 8000 and 5500, and after 4500 yr BP, the climate was 160 warm and humid, similar to the present, with establishment of the 161 semideciduous forest (Ledru, 1993). Quanti fi cation of charcoal in 162 a soil pro fi le from this same region indicated a more humid per- 163 iod, with decreasing of the  fi re frequency, only after  c . 3000 yr 164 BP (Vernet  et al ., 1994). SOM carbon-isotope analysis and char- 165 coal dating in three pro fi les suggested the existence of a mixture 166 of trees and grasses from the early Holocene to  c . 1700 yr BP. 167 After this period until the present, the predominance of C 3  veg- 168 etation (forest) is attributed to an increasing of the humidity in 169 the region (Pessenda  et al ., 1996). 170 A dry period during the early Holocene is recognized also in 171 Lagoa Santa (19 ° 30   S – 44 ° 07   W). There, humidity increased 172 after 5400 yr BP and a vegetation similar to the present (mosaic 173 of   cerrado , semideciduous forest and gallery forest) was estab- 174 lished after  c . 4600 yr BP (Parizzi  et al ., 1998). In the same 175 region, at Lagoa dos Olhos (19 ° 38   S – 43 ° 54   W), a dry period 176 with frequent  fi res between  c . 13700 and 7000 yr BP, charac- 177 terized by  cerrada ˜  o  and  cerrado , was followed by a phase of  178 increasing humidity between 7000 and 4000 yr BP. After 4000 179 yr BP, the climate became even more humid and there was estab- 180 lishment of the semideciduous forest, which still coexisted with 181 cerrado  vegetation. Present climatic conditions were reached 182 around 1300 yr BP (Oliveira, 1992). 183 At Lago do Pires (17 ° 57   S – 42 ° 13   W), a dry climatic phase 184 with  cerrado  vegetation is recorded between 9700 and 8800 yr 185 BP; expansion of the gallery forests indicates a slightly more 186 humid climate between 8800 and 7500 yr BP; then another dry 187 climatic phase is recorded between 7500 and 5500 yr BP. After 188 this time, the vegetation evolved to a  cerrada ˜  o  which was main- 189 tained until 2700 yr BP, when a more humid climate allowed the 190 establishment of a denser vegetation. Increasing humidity allowed 191 the establishment of the semideciduous forest characteristic of this 192 region at around 1000 yr BP (Behling, 1995). 193 Other authors identi fi ed signi fi cant climatic changes in South 194 America during the late Quaternary (see, for example, Van der 195 Hammen, 1991; Absy  et al ., 1991; Servant  et al ., 1993). Studies 196 have suggested that in the north of the continent climate was col- 197 der and drier before 10000 yr BP; humid, similar to the present 198 in the interval 10000 – 8000 yr BP; colder and drier at 6000 – 4000 199 yr BP, and similar to the present since 4000 yr BP (Markgraf and 200 Bradbury, 1982). In central and southern Brazil (15 – 35 °  S) three 201 major palaeoenvironmental phases are distinguished during the 202 Holocene: dry climatic conditions between 10000 and 7000 yr 203 BP, increasing moisture levels and a more seasonal climate 204 between 7000 and 4000 yr BP, and establishment of modern con- 205 ditions after 4000 yr BP, with development of the  cerrado  veg- 206 etation to the north, semideciduous forest in the centre and  Arau- 207 caria  forest to the south of the area considered (Ledru  et al ., 208 1998). In the eastern Amazonia and in central Brazil frequent for- 209 est  fi res and an opening of the vegetation are noticed between 210 8000 and 4000 yr BP, indicating a dry climatic phase (Turcq 211 et al ., 1996). After 4000 yr BP the climate was more humid, with  1  R. Scheel-Ybert  et al. : Holocene palaeoenvironmental evolution of Brazilian savanna soils 75 23743744745 010 000200030005000700060008000100040009000     S   a     l     i    t   r   e     (      A     )      L   a   g    o    d   a     S   e   r   r   a     N   e   g    r   a     L   a   g    o   a    S   a   n    t   a      L   a   g    o   a    d   o   s    O     l     h   o   s      L   a   g    o    d   o      P     i   r   e   s    t     h     i   s    s    t    u    d    y     P     i   r   a   c     i   c   a     b   a     1    9     º    0    0     ’     S    /    4    6      º     4    6      ’      W    1    9      º     0    0      ’     S    /    4    6      º     5    0      ’      W    1    9      º     3    0      ’     S    /    4    4      º     0     7      ’      W    1    9      º     3    8      ’     S    /    4    3      º     5    4      ’      W    1     7      º     5     7      ’     S    /    4    2      º     1    3      ’      W    2    2      °   -    2    3      °     S    /    4     7      °   -    4    9      °      W    2    2      °     4    3      ’     S    /    4     7      °     3    8      ’      W    S   a     l     i    t   r   e     (       B     )     1    9      º     0    0      ’     S    /    4    6      º     4    6      ’      W    S   a     l     i    t   r   e     (      C     )     1    9      º     0    0      ’     S    /    4    6      º     4    6      ’      W EW  presentconditions drier climatearidmore humid cCf acgf cf f f f f cccccCcgCcgcCcf fccCfC 746747  Figure 1  Summary of climatic changes documented for the  cerrado  and semideciduous forest phytogeographical zone in southern and central Brazil. Sa ˜ o 748  Paulo State: Piracicaba (Pessenda  et al ., 1998); Minas Gerais State: Lago da Serra Negra (Oliveira, 1992); Salitre: A (Ledru, 1993); B (Vernet  et al ., 749 1994); C (Pessenda et al ., 1996); Lagoa Santa (Parizzi et al ., 1998); Lagoa dos Olhos (Oliveira, 1992); Lago do Pires (Behling, 1995). c =  cerrado sensu 750  amplo ; C  =  cerrada ˜ o; f   =  semideciduous forest; g  =  gallery forest; a  =  Araucaria  forest. 212  forest reconstitution in many areas (Turcq  et al ., 1996; Pessenda 213  et al ., 2001; Freitas  et al ., 2001). 214  Regional setting 215  In this study, samples from sites Botucatu (22 ° 51   S – 48 ° 29  W), 216  Jaguariuna (22 ° 40  S – 47 ° 10  W), Anhembi (22 ° 45  S – 47 ° 58  W) 217  and Pirassununga (22 ° 02   S – 47 ° 30   W), in the Sa ˜ o Paulo State 218  (Figure 2), were analysed for anthracology, soil isotopic compo- 219  sition (   13 C) and radiocarbon dating. 220  The study area is located in the southeastern part of the  cerrado 221  phytogeographical zone, at the transition to the semideciduous 222  forest zone. Both vegetation types occur under a tropical seasonal 223  climate. The average annual precipitation in most areas of this 224  region ranges from 1000 to 1750 mm, the average annual tem- 225  perature is 20 – 26  ° C, and the dry season lasts 5 – 6 months in the 226  cerrado  and 3 – 5 months in the semideciduous forest (Nimer, 227  1989). 228  Semideciduous forests contain trees up to 30 m high with an 229  important component of understorey vegetation.  Hymenaea , 230  Copaifera ,  Peltophorum ,  Astronium  and  Aspidosperma  are some 231  of the dominant genera in this formation (IBGE, 1992). 752753754 0º 23 º 27 ’ S ã o PauloState22 º 24 º 20 º 51 º  49 º  47 º 45 º + + + ++ + ++++ + 3421 755756  Figure 2  Study area in the Sa ˜ o Paulo State, Brazil. (1) Botucatu; (2) 757  Jaguariuna; (3) Anhembi; (4) Pirassununga. 1  HOL: the holocene 2  16-10-02 07:35:00 Rev 16.04x HOL$$$596P 232 The  cerrado  (Brazilian savanna) is a vegetation type of low 233 trees with twisted branches and stems, growing in the midst of  234 herbaceous and dwarf woody plants. In fact, the  cerrado  is a veg- 235 etation gradient that includes  fi ve principal physiognomies 236 (Coutinho, 1990). The  cerrada ˜  o  is a forested formation with trees 237 up to 15 m high, without a shrubby understorey but with a her- 238 baceous stratum in tufts. Arboreal species such as  Curatella amer- 239 icana ,  Qualea grandiflora ,  Q .  parviflora ,  Caryocar brasiliense , 240  Bowdichia virgilioides  and  Stryphnodendron barbatiman  are typi- 241 cal of this formation. Although the  cerrado  has typical arboreal 242 vegetation, the  cerrada˜ o  has a  fl ora composition that is partially 243 the same as the semideciduous forest (Leita ˜ o Filho, 1992). The 244 cerrado sensu stricto  is characterized by sparse trees and shrubs 245 up to 5 m high. Its  fl oristic composition is similar to the  cerrada˜ o , 246 but the trees are smaller and sparser, while the understorey veg- 247 etation of shrubs and grasses is more signi fi cant. Its most typical 248 species are  Stryphnodendron adstringens  and  Dimorphandra 249 mollis . The  campo cerrado  and the  campo sujo  are intermediate 250 savanna formations consisting of grassland with scattered rachitic 251 woody plants, without an arboreal cover. Representative taxa are 252  Andira humilis ,  Byrsonima  spp. and species of Palmae, Composi- 253 tae and Malvaceae. The  campo limpo  is basically a grassland. 254 At present, poor patches of secondary semideciduous forest, 255 surrounded by agro-pastoral  fi elds, exist in Botucatu, Jaguariuna 256 and Anhembi. At Botucatu, the arboreal stratum is dominated by 257  Anadenanthera  cf.  macrocarpa  (Leguminosae), and at Anhembi 258 by  Peschiera fuchsiaefolia  (Apocynaceae). In Jaguariuna, the very 259 open forest is dominated by  Eucalyptus  exogenous species. 260  Bauhinia  and  Piptadenia  (Leguminosae) are also well rep- 261 resented. Present vegetation in Pirassununga is  campo-cerrado . A 262 gallery forest exists near the sampling site. 263 Material and methods 264 Charcoal and soil samples from Botucatu (BOT and BOT II), Jag- 265 uariuna (JAG and JAG II) and Anhembi (PIN) were collected in 266 trenches 1.0 m    2.0 m large, up to 2.4 m in depth. Soils were 267 sampled by collecting up to 10 kg of material in 10 cm layers. 268 Samples deeper than 240 cm were drilled from the base of the  1  76  The Holocene  13 (2003) 23269  trenches using an auger. Botucatu samples were taken in two 270  trenches, at the top of two slopes  c . 1500 m apart, at the Fazenda 271  Experimental Lageado, Faculty of Agronomy Sciences, Sa ˜ o Paulo 272  State University (UNESP). In Jaguariuna, samples were collected 273  from two trenches located at the top and middle parts of a slope 274  separated by  c . 75 m, at the Centro Nacional de Pesquisa de Moni- 275  toramento e Avaliac ¸ a ˜ o de Impacto Ambiental (Embrapa). 276  The sample from Pirassununga (EMAS) was collected from a 277  single layer of   c . 20 cm, between 180 and 200 cm depth from a 278  trench 5 m long (Coutinho, 1981). Sampling was undertaken in 279  an area of   Ferrovia Paulista , along the road between Pirassununga 280  and Cachoeira das Emas. 281  In the laboratory, soil samples from Botucatu, Jaguariuna and 282  Anhembi were dried and sieved through a 2 mm mesh.    13 C 283  analysis was carried out at the Laboratory of Environmental Iso- 284  topes, University of Waterloo (Canada) and at the Laboratory of  285  Stable Isotopes, Center for Nuclear Energy in Agriculture 286  (Piracicaba, Brazil). Results are expressed relative to the inter- 287  national standard PDB. Precision for three determinations was 288   0.2 ‰ . 289  Charcoal fragments present in the soil were hand-collected. 290  Large charcoal samples (  10 g) were subjected to acid-alkaline- 291  acid treatments for removal of resins, fulvic acids and lignin. After 292  drying, dating was carried out at the  14 C Laboratory of the Center 293  for Nuclear Energy in Agriculture, using the benzene synthesis 294  and liquid scintillation counting method (Pessenda and Camargo, 295  1991). Small charcoal samples (  2 g) were entirely combusted 296  and CO 2  samples sent for AMS dating at the Isotrace Laboratory 297  (Toronto, Canada). Results are representative of the mean char- 298  coal age for each 10 cm layer. 299  The remaining fragments were examined for anthracological 300  analysis under a re fl ected light microscope. Charcoal pieces were 301  c . 1 cm of average size in all samples. Most of the charcoal was 302  partially vitri fi ed ( fi bre cells were  ‘ melted ’ , while parenchyma 303  cells seemed normal). Systematic identi fi cation was carried out 304  with the help of a program for computer-aided identi fi cation, 305  coupled to a data bank of anatomical features from extant and 306  fossil charcoal (Scheel-Ybert  et al ., 1998), and by comparing the 307  fossil material with a reference collection of charred wood and 308  with descriptions and photographs from the literature (Gregory, 309  1994). 310  The results are presented as presence/absence of taxa. Cumulat- 311  ive histograms indicate the number of   cerrado  and forest taxa. 312  Taxa that present species on both formations were classi fi ed as 313  ‘ forest/  cerrado ’ . 314  Results and interpretation 315  Most of the anthracological samples analysed at each site present 316  only a small number of fragments and few taxa. Results must 317  therefore be considered carefully. 318  In Botucatu, pro fi le BOT covers the last 8000 years (Figure 3). 319  It shows an important contribution of   cerrada ˜  o  taxa in the lower 320  levels  –  Vochysiaceae ( Qualea  sp.,  Vochysia  sp.) are typical of  321  the  cerrado , but particularly frequent in the  cerrada ˜  o  –  and an 322  increasing contribution of forest taxa ( Sebastiania  sp.,  Cryptoca- 323  ria  sp.,  Acacia  sp.) in the upper levels (0 – 80 cm). Some forest 324  taxa are also present between 140 and 190 cm ( c . 6000 to 5500 325  yr BP). 326  Pro fi le BOT II covers the last 6700 years (Figure 4). Typical 327  forest taxa are present only in the lower levels (120 – 200 cm), 328  from  c . 6500 to 5700 yr BP, in a period when these taxa are also 329  present in BOT. Open  cerrado  taxa are rare all along the pro fi le, 330  but  cerrada ˜  o  elements are abundant between 40 and 170 cm depth 331  ( c . 6000 to 3000 yr BP).  ‘ Forest/  cerrado ’  taxa are present in the 332  majority of the samples. The most important, in the upper levels, 1  HOL: the holocene 2  16-10-02 07:35:00 Rev 16.04x HOL$$$596P 759760761 Forest Forest / Cerrado Cerrado    T  a  x  o  n 14  C age Level    P   i  p   t  o  c  a  r  p   h  a   a   f   f .   m  a  c  r  o  p  o   d  a   S  e   b  a  s   t   i  a  n   i  a   s  p    C  r  y  p   t  o  c  a  r  y  a   s  p  c   f .    A  c  a  c   i  a    /    A  c  a  c   i  a   s  p   L  e  g  u  m   i  n  o  s  a  e  s  p  p    L  u  e   h  e  a   s  p   U  n   i   d  e  n   t   i   f   i  e   d    P  e   l   t  o  g  y  n  e   s  p    D   i  m  o  r  p   h  a  n   d  r  a   s  p    Q  u  a   l  e  a   s  p  p    V  o  c   h  y  s   i  a   s  p  c   f .   V  o  c   h  y  s   i  a  c  e  a  e    N  u  m   b  e  r  o   f  c   h  a  r  c  o  a   l  p   i  e  c  e  s   0-10 ** * 9 30-40 ** * 6 40-50 * * 12 50-60 * * 12 3040 ± 180* 70-80 * * * 12 4150 ± 110 4630 ± 80 4830 ± 70   5500 ± 70 120-130 * * 22 5560 ± 80 140-150 * * * 15 150-160 * * 14 160-170 * ** 20 170-180 * 16 6080 ± 300* 180-190 * 4 200-210 ** 10 210-220 * * 16 8000 ± 430* 220-230 * * 5 123 762763 Figure 3  Botucatu (pro fi le BOT). Results of anthracological analysis 764 (presence of taxa in each sample) and number of charcoal pieces analysed 765 per sample. Histograms indicate the number of taxa from each vegetation 766 type (   forest; a  forest or cerrado ; `  cerrada ˜  o (arboreal savanna);  767 cerrado sensu amplo ). *AMS 14 C dates. 333 are  Croton  and  Luehea , genera that have several species typical 334 of semideciduous and gallery forests. 335 Anthracological results from both sites point to the existence 336 of forested vegetation in Botucatu during all the studied period, 337 with an important contribution of semideciduous forest and  cerra- 338 da ˜  o  taxa. 339 Soil organic matter    13 C analysis (Figure 5) complements this 340 approach. In BOT,    13 C values vary between  – 24.7 ‰  (210 – 220 341 cm) and  – 26.3 ‰  (surface level), indicating arboreal vegetation 342 through the entire pro fi le. In BOT II,    13 C values  fl uctuate from 343 – 22.3 ‰  (lower levels) to  – 26.1 ‰  (surface). This indicates the 344 predominance of arboreal C 3  vegetation. In the lower levels,  13 C 345 enrichment may be explained by the SOM isotope fractionation 346 (Nadelhoffer and Fry, 1988; Boutton, 1991), but the existence of  347 a more open arboreal vegetation and a greater in fl uence of C 4 348 plants (grasses) is also possible. 349 In Jaguariuna, there are chronological inversions in the two 350 studied pro fi les. In JAG, these inversions are attributed to bio- 351 turbation (Gouveia  et al ., 1999; Gouveia and Pessenda, 2000; 352 Gouveia, 2001). There are three series of ages relatively similar 353 (Figure 6), delineating different sedimentary blocks. In JAG II, 354 besides the biological activity, the inversions are attributed to the 355 colluvial nature of the deposit (Gouveia  et al ., 1999; Gouveia and 356 Pessenda, 2000; Gouveia, 2001). Indeed, there is in JAG (situated 357 upstream) a possible sedimentary hiatus between 180 and 200 cm, 358 since the date 6240 yr BP (level 170 – 180 cm), is followed by 359 9120 yr BP (level 200 – 210 cm). This material is found in JAG 360 II (situated downstream) between 120 and 240 cm, where several 361 dates cluster around 8000 yr BP. We assume this material can 362 be used for palaeoenvironmental reconstruction, because colluvial 363 source is very near and, in consequence, charcoal pieces re fl ect 364 the local vegetation. In both cases (JAG and JAG II),    13 C curves 365 present a characteristic zigzag trend which suggests that soil 366 material was reworked (Schwartz, personal communication). 367 However, chronological inversions do not invalidate the palaeo- 368 environmental interpretations proposed, because the general 369 trends of climatic evolution may be inferred from the different  1  R. Scheel-Ybert  et al. : Holocene palaeoenvironmental evolution of Brazilian savanna soils 77 23770771772  Habitat Forest Forest / Cerrado Cerrado    T  a  x  o  n 14  C age Level    S  e   b  a  s   t   i  a  n   i  a   s  p    C  r  y  p   t  o  c  a  r  y  a   s  p  c   f .    A  c  a  c   i  a    /    A  c  a  c   i  a   s  p    C  r  o   t  o  n   s  p    A  n  a   d  e  n  a  n   t   h  e  r  a   s  p   L  e  g  u  m   i  n  o  s  a  e  c   f .   L  e  g  u  m   i  n  o  s  a  e   /   V  o  c   h  y  s   i  a  c  e  a  e    G  u  e   t   t  a  r   d  a   s  p    L  u  e   h  e  a   s  p   P  a   l  m  a  e   U  n   i   d  e  n   t   i   f   i  e   d    P  e   l   t  o  g  y  n  e   s  p    Q  u  a   l  e  a   s  p    V  o  c   h  y  s   i  a   s  p  c   f .   V  o  c   h  y  s   i  a  c  e  a  e   G  r  a  m   i  n  e  a  e    N  u  m   b  e  r  o   f  c   h  a  r  c  o  a   l  p   i  e  c  e  s   0-10 * * 8 40-50 * * * * 5 3080 ± 70* 50-60 * 2 60-70 * 6 70-80 * 5 80-90 * * * 8 4630 ± 80* 100-110 * * 10 110-120 **** 8 5660 ± 270* 120-130 * * 8 130-140 * * 5 140-150 * 6 150-160 * * * 9 160-170 * ** 18 170-180 * * * 5 190-200 * * 7 200-210 * 4 6690 70* 1234 773774  Figure 4  Botucatu (pro fi le BOT II). Results in anthracological analysis (presence of taxa in each sample) and number of charcoal pieces analysed per 775  sample. Histograms indicate the number of taxa from each vegetation type (see legend for Figure 3). *AMS  14 C dates. 777778779 BOTBOT IIPINJAGJAG II cm ‰  PDB-27 -25 -23 -21 -19 -17050100150200250300350 4320463080006690463091205580807075804290252030405500608030806330463080006690463091205580807075804290252030405500608030806330 780781  Figure 5  Soil organic matter    13 C variation (in % PDB) in Botucatu 782  (BOT and BOT II), Jaguariuna (JAG and JAG II) and Anhembi (PIN) as 783  function of soil depth.  14 C ages are given for each curve. 370  sedimentary blocks, among which the chronological sequence is 371  coherent. 372  In the JAG pro fi le, anthracological results cover the last 9000 373  years (Figure 6). Typical forest taxa are restricted to the upper 374  part of the pro fi le (0 – 30 cm), probably after  c . 3000 yr BP. Taxa 375  typical of the  cerrado  (  Andira ,  Bowdichia ,  Qualea , etc.) are abun- 376  dant in the lower levels (80 – 260 cm).  ‘ Forest/  cerrado ’  taxa (e.g., 377  Tabebuia  sp.,  Cassia  sp., Leguminosae) are present throughout 378  the pro fi le. 379  JAG II pro fi le covers the last 8000 years (Figure 7). Forest taxa 380  are also restricted to the upper levels (0 – 40 cm), probably after 381  c . 3000 yr BP. Between 50 and 120 cm  ‘ forest/  cerrado ’  taxa pre- 382  dominate (various Leguminosae species), while in lower levels 383  (150 – 240 cm), around 8000 yr BP, there is practically a single 384  species (cf.  Andira ), typical of the  cerrado . 385  These results suggest the presence of   cerrado  on this site during 1  HOL: the holocene 2  16-10-02 07:35:00 Rev 16.04x HOL$$$596P 386 the late and mid-Holocene, and the establishment of a forested 387 vegetation after  c . 3000 yr BP. 388 The    13 C analysis of soil samples (Figure 5) shows in both 389 pro fi les the predominance of forested formations after  c . 3000 yr 390 BP, with values between  – 23.0 ‰  and  – 20.7 ‰ . Both curves show 391 higher    13 C values between  c . 3000 and 5500 yr BP, slightly 392 decreasing values from  c . 5500 to 6500 yr BP, then increasing 393 values from  c . 6500 yr BP to the base. The lower levels present 394   13 C values characteristic of a vegetation type where C 3  and C 4 395 plants coexist ( – 20 ‰  to  – 17.9 ‰ ), i.e., an open  cerrado  with a 396 great proportion of grasses. In both pro fi les, higher    13 C values 397 in levels lower than 200 cm depth suggest the predominance of C 4 398 plants (grasses), i.e., probably a  campo-sujo , prior to 8000 yr BP. 399 At Anhembi, anthracological results of the PIN pro fi le cover 400 the last 8000 years (Figure 8). The presence of   Securinega  aff. 401 guarayuva  in the surface sample indicates the existence of a for- 402 ested formation in a recent period. The Gramineae charcoal in the 403 same sample suggests it can be a  cerrada ˜  o .  Bauhinia  sp. is fre- 404 quent in the upper part of the pro fi le. Although it can occur in 405 the open  cerrado , this genus is mostly characteristic of a forested 406 vegetation.  Dimorphandra  sp., typical of the  cerrado , and  Qualea 407 sp., particularly frequent in the  cerrada ˜  o , occur in the lower part 408 of the pro fi le, from 80 cm to the base. 409 These results point out to the existence of an arboreal veg- 410 etation, possibly a  cerrada ˜  o , from the base of the anthracological 411 sequence until  c . 3000 yr BP, when the establishment of a dense 412 cerrada ˜  o  or a forest occurred. 413 SOM    13 C analysis also indicates the predominance of C 3 414 plants in the whole period (Figure 5). In lower levels (250 – 415 300cm), SOM    13 C values are more enriched ( – 22.3 ‰  up to 416 – 23.0 ‰ ). In addition to the SOM fractionation, these enriched 417 values can be related to the existence of a more open arboreal 418 vegetation and to the in fl uence of C 4  plants at the early Holocene, 419 probably due to the presence of a drier climate. From 240 cm to 420 the soil surface, and particularly in the upper 50 cm (after 3000 421 yr BP),    13 C values are more depleted (up to  – 24.3 ‰ ), suggesting 422 the progressive establishment of a forested formation, probably 423 related to a more humid climate. 424 The Pirassununga sample (EMAS) shows a clear predominance