Preview only show first 10 pages with watermark. For full document please download

Orejas De Izaje1

   EMBED


Share

Transcript

10/5/2013, 3:03 PM Memoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo:  Atril de Armado de contraejes Fuller  5,000 3.6 4 Carga (Kg) Nd (2 (2-2.1 o 2-2.2) Numero de orejas A36 55 50 20 77 6 E71T-1 Y 40 50 115 Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Cumple Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3.4.3 Cumple Cumple Cumple Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Nd factor de Diseño (para. 3-1.3) 2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la carga y condiciones ambientales se definen con precisión o no grave. 2.00  para los estados límite de fluencia o pandeo, 2.40  para los estados límite de fractura y para el diseño de conexión. 2-2.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión. 3.00  para los estados límite de fluencia o pandeo, Elaborado por: Luis Enrique Aguilar Montoya 3.60  para los estados límite de fractura y para el diseño de conexión. Inspector QA/QC FLSmidth 1 de 69 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 7 36,000 8 58,000 29,000,000 9 Material Fy [psi] Fu Fu [psi] E [psi] 10 Dimensiones: 11 2.17 Dh D h [in] 12 6.10 w [in] 0.79 t [in] 13 14 3.03 R [in] 15 0.24 Leg [in] 16 Esfuerzo de Traccion: 17 Ft [psi] = Fy/Nd 18 A [in^2] = t*(w-Dh) 19 St [psi] = W/A CheckSt = St < Ft 20 Limite elastico Resistencia a la traccion Modulo de Elesticidad Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 E7018/E71T-1 58,000 70,000 Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion 21 Resistencia al Corte a travez del agujero: 22 Av [in^2] [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t 2*(R-(Dh/2)*cos(radians(45)))*t 23 Area total de dos planos de corte (eq 3-50) 24 Pv [lb] [lb] = 0.7*Fu 0.7*Fu/(1 /(1.2* .2*Nd Nd)*A )*Avv Doble Doble plano plano de resist resistenc encia ia al corte corte (eq 3-49) 3-49) 25 psi in^2 psi 10,000 3.10 3,556 Cumple in^2 3.568 lb 33 536 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 7 36,000 8 58,000 29,000,000 9 Material Fy [psi] Fu Fu [psi] E [psi] Limite elastico Resistencia a la traccion Modulo de Elesticidad 10 Dimensiones: 11 2.17 Dh D h [in] 12 6.10 w [in] 0.79 t [in] 13 14 3.03 R [in] 15 0.24 Leg [in] Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 58,000 70,000 Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura 16 Esfuerzo de Traccion: 17 Ft [psi] = Fy/Nd 18 A [in^2] = t*(w-Dh) 19 St [psi] = W/A CheckSt = St < Ft 20 Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion 21 Resistencia al Corte a travez del agujero: 22 Av [in^2] [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t 2*(R-(Dh/2)*cos(radians(45)))*t 23 Area total de dos planos de corte (eq 3-50) 24 Pv [lb] [lb] = 0.7*Fu 0.7*Fu/(1 /(1.2* .2*Nd Nd)*A )*Avv Doble Doble plano plano de resist resistenc encia ia al corte corte (eq 3-49) 3-49) 25 26 CheckPv = W < Pv 27 Esfuerzo Cortante en la Soldadura: 28 Exx [psi] = Fu F u si Fu=garganta_3-3 2 de 69 Lifting Lug Design Per ASME BTH-1-2005 References: 1. ASME. (2006). "Design of below-the-hook lifting devices, BTH-1-2005", New York. 2. Duerr, D. (2008). “ASME BTH-1 Pinned Connection Design Provisions.” Practice Periodical on Struct 3. Duerr, D. (2006). “Pinned connection strength and behavior.” J. Struct. Eng., Eng., 132(2), 182-194. Input: Nd = t= a= Dp = be = Dh = Curved Edge? E7018/E71T-1 3.00 0.25 2 1.5 3 2 Y For most liftin inches inches inches inches inches Y or N Lug Plate Thickness Material For most lugs 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 7 36,000 8 58,000 29,000,000 9 Material Fy [psi] Fu Fu [psi] E [psi] Limite elastico Resistencia a la traccion Modulo de Elesticidad 10 Dimensiones: 11 2.17 Dh D h [in] 12 6.10 w [in] 0.79 t [in] 13 14 3.03 R [in] 15 0.24 Leg [in] Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 58,000 70,000 Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura 16 Esfuerzo de Traccion: 17 Ft [psi] = Fy/Nd 18 A [in^2] = t*(w-Dh) 19 St [psi] = W/A CheckSt = St < Ft 20 Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion 21 Resistencia al Corte a travez del agujero: 22 Av [in^2] [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t 2*(R-(Dh/2)*cos(radians(45)))*t 23 Area total de dos planos de corte (eq 3-50) 24 Pv [lb] [lb] = 0.7*Fu 0.7*Fu/(1 /(1.2* .2*Nd Nd)*A )*Avv Doble Doble plano plano de resist resistenc encia ia al corte corte (eq 3-49) 3-49) 25 26 CheckPv = W < Pv 27 Esfuerzo Cortante en la Soldadura: 28 Exx [psi] = Fu F u si Fu=garganta_3-3 2 de 69 Lifting Lug Design Per ASME BTH-1-2005 References: 1. ASME. (2006). "Design of below-the-hook lifting devices, BTH-1-2005", New York. 2. Duerr, D. (2008). “ASME BTH-1 Pinned Connection Design Provisions.” Practice Periodical on Struct 3. Duerr, D. (2006). “Pinned connection strength and behavior.” J. Struct. Eng., Eng., 132(2), 182-194. Input: Nd = t= a= Dp = be = Dh = Curved Edge? E7018/E71T-1 3.00 0.25 2 1.5 3 2 Y For most liftin inches inches inches inches inches Y or N Lug Plate Thickness Material For most lugs Lifting Lug Design Per ASME BTH-1-2005 References: 1. ASME. (2006). "Design of below-the-hook lifting devices, BTH-1-2005", New York. 2. Duerr, D. (2008). “ASME BTH-1 Pinned Connection Design Provisions.” Practice Periodical on Struct 3. Duerr, D. (2006). “Pinned connection strength and behavior.” J. Struct. Eng., Eng., 132(2), 182-194. Input: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = 3.00 0.25 2 1.5 3 2 Y 36 58 For most liftin inches inches inches inches inches Y or N ks ksi ks ksi Lug Plate Thickness Material Material Yield Stress Material Ultimate Stress For most lugs Fy = 36 ksi for Fu = 58 ksi for Output: beff1 = beff2 = beff = r= R= Z' = Av = Pt = Pb = Pv = Pp = 1.00 inches 2.37 inches 1.00 in i nches 3 inches 3 inches 0.08 inches 1.10 sq. inches 8.06 13.55 12.45 5.63 kips kips kips kips Pt = ASME Equatio ASME Equatio ASME Equatio ASME Equatio ASME Equatio ASME Equatio Note: ASME It does not tel Pin Diameter Effect: Dh/Dp = Check All? Cr = phi = Z= Z' = Av = ASME Equatio ASME Equatio 1.33 Y Y or N. Ch Check even when Dh/Dp <= 1.1? 0.818 Reduction Factor 41.250 Degrees 2.186 Inches 0.041 Inches 1.07 sq s q. inches 6.59 kips Per ASME BT Ref. 2 Equatio Ref. 2 Equatio Ref. 2 Equatio Ref. 2 Equatio Pb = Pv = Pp = 11.08 kips 12.10 kips 5.63 kips Max. P = 5.63 kips Dimensional Rules of Thumb: Edge Distance = a+Dh/2 Grip = Length of shackle pin available for bearing against lug. = Clear distance between shackle legs. For Dp < 2": Edge Distance = 1.5 * Dp Dh = Dp + 1/8" For Dp >= 2": Edge Distance = 1.75 * Dp Dh = Dp + 1/4" For all Dp, t = Grip/3. Add cheek plates as required to get desired Pp. Best practice is to add sufficient cheek plates to insure bearing ov er 80% of the grip. These are only rules of thumb. Deviation from them is allowed. If the connecti ral Design and Construction, Vol. 13, No. 2, 53-58. g devices used in construction Nd = 3.00. See Section 3-1.3 of the ASME code for more information. this is Y, but N is left as an option. ASTM A36. Fy = 50 ksi for ASTM A572, Grade 50. ASTM A36. Fu = 65 ksi for ASTM A572, Grade 50. n (3-46). n (3-47). n (C3-2). n (3-50) modified per Commentary. n (3-45). n (3-48). n (3-49). n (3-51)*Dp*t. If the connection is subject to rotating cyclic loading, this value shall be divided by 2!. TH-1-2005 requires Dh/Dp <= 1.1. When this is not the case it only states that "the effect of the clea l you how to take it into account. Reference 2 provides this information. -1-2005, this check can be ignored when Dh/Dp < 1.1, but the option to check it anyway is left availa n (6) n (9). This is half the angle of the portion of the pin in contact with the lug. n (20) n (21) on is subject to rotating cyclic loading, this value shall be divided by 2!. In certain circumstances a value of 2.00 can be justified. rance shall be taken into account". ble to the user. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Lug with Pinned Connection: ASME BTH-1 Top Lug Description 65,000 W [lb] Weight of the load 3 Nd Design factor Material: SA-36 Material 36,000 Fy [psi] Yield strength 58,000 Fu [psi] Tensile strength 29,000,000 E [psi] Modulus of elasticity Dimensions: 3 Dh [in] Hole diameter 10 w [in] Width of lug 1 t [in] Thickness of lug 5 R [in] Outer radius 0.625 Leg [in] Weld leg height Tensile Stress: Ft [psi] = Fy/Nd Allowable tensile stress (eq 3-1) A [in^2] = t*(w-Dh) Area in tension St [psi] = W/A Tensile stress CheckSt = St < Ft Shear Strength Through Pinhole: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Total area of two shear planes (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Double plane shear strength (eq 3-49) CheckPv = W < Pv Shear Stress in Weld: Exx [psi] = Fu Tensile strength of weld filler metal Fv [psi] = 0.6*Exx/(1.2*Nd) Allowable weld shear stress (eq 3-53) Aw [in^2] = (2*w+2*t) * (0.707*Leg) Area of the weld Fw [lb] = Fv*Aw Allowable weld load CheckFw = W < Fw Minimum Weld Throat: 3-3.4.3 throat_3-3 [in] = IF(K14<=0.25,0.125,IF(K14<0.5,0.188,(IF(K14<0.75,0.25,0.313)))) IF(K14<= check_throat = Leg*0.707 >=throat_3-3 36000/3 = 1*(10-3) = 65000/7 = 9286 < 12000 = 12,000 7 9,286 Acceptable 2*(5-(3/2)*COS(RADIANS(45)))*1 = 7.879 0.7*58000/(1.2*3)*7.879 = 88,854 65000 < 88854 = Acceptable 58000 = 58,000 0.6*58000/(1.2*3) = 9,667 (2*10+2*1) * (0.707*0.625) = 9.721 9667*9.721 = 93,972 65000 < 93972 = Acceptable .25,0.125,IF(K14<0.5,0.188,(IF(K14<0.75,0.25,0.313)))) = 0.313 0.625*0.707 >=0 = Acceptable Diseño Oreja de Izaje segun ASME BTH-1-2005 Entrada: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = Max. P = 3.00 10 50 40 75 50 Y mm mm mm mm mm Y or N 36 ksi 58 ksi 4218.42 Kg Factor de Diseño Espesor de la oreja de izaje Material Material Yield Stress Material Ultimate Stress IF(B8="Y",B17-SQRT(B17^2-B7^2/8),IF(B8 = "N", 0,"Error!")) Input: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = 3.00 0.39 1.97 1.57 2.95 1.97 Y 36 58 For most liftin inches inches inches inches inches Y or N ksi ksi Lug Plate Thickness Material Material Yield Stress Material Ultimate Stress For most lugs Fy = 36 ksi for Fu = 58 ksi for Output: beff1 = 1.57 inches beff2 = 2.33 inches beff = 1.57 inches r = 2.95275591 inches R = 2.95275591 inches ASME Equatio ASME Equatio Z' = Av = Pt = Pb = Pv = Pp = 0.08 inches 1.71 sq. inches 19.98 21.00 19.30 9.30 kips kips kips kips Pt = Pb = Pv = Pp = Max. P = ASME Equatio ASME Equatio ASME Equatio ASME Equatio Note: ASME It does not tel Pin Diameter Effect: Dh/Dp = Check All? Cr = phi = Z= Z' = Av = ASME Equatio ASME Equatio 1.25 Y Y or N. Check even when Dh/Dp <= 1.1? 0.835 Reduction Factor 44.000 Degrees 2.189 Inches 0.051 Inches 1.68 sq. inches 16.68 17.54 18.99 9.30 kips kips kips kips 9.30 kips Per ASME BT Ref. 2 Equatio Ref. 2 Equatio Ref. 2 Equatio Ref. 2 Equatio If the connecti g devices used in construction Nd = 3.00. See Section 3-1.3 of the ASME code for more information. this is Y, but N is left as an option. ASTM A36. Fy = 50 ksi for ASTM A572, Grade 50. ASTM A36. Fu = 65 ksi for ASTM A572, Grade 50. n (3-46). n (3-47). n (C3-2). n (3-50) modified per Commentary. n (3-45). n (3-48). n (3-49). n (3-51)*Dp*t. If the connection is subject to rotating cyclic loading, this value shall be divided by 2!. TH-1-2005 requires Dh/Dp <= 1.1. When this is not the case it only states that "the effect of the clea l you how to take it into account. Reference 2 provides this information. -1-2005, this check can be ignored when Dh/Dp < 1.1, but the option to check it anyway is left availa n (6) n (9). This is half the angle of the portion of the pin in contact with the lug. n (20) n (21) on is subject to rotating cyclic loading, this value shall be divided by 2!. In certain circumstances a value of 2.00 can be justified. rance shall be taken into account". ble to the user. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Lug with Pinned Connection: ASME BTH-1 Top Lug Description 20,000 W [lb] Weight of the load 3 Nd Design factor Material: SA-36 Material 36,000 Fy [psi] Yield strength 58,000 Fu [psi] Tensile strength 29,000,000 E [psi] Modulus of elasticity Dimensions: 3 Dh [in] Hole diameter 10 w [in] Width of lug 0.5 t [in] Thickness of lug 5 R [in] Outer radius 0.5 Leg [in] Weld leg height Tensile Stress: Ft [psi] = Fy/Nd Allowable tensile stress (eq 3-1) A [in^2] = t*(w-Dh) Area in tension St [psi] = W/A Tensile stress CheckSt = St < Ft Shear Strength Through Pinhole: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Total area of two shear planes (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Double plane shear strength (eq 3-49) CheckPv = W < Pv Shear Stress in Weld: Exx [psi] = Fu Tensile strength of weld filler metal Fv [psi] = 0.6*Exx/(1.2*Nd) Allowable weld shear stress (eq 3-53) Aw [in^2] = (2*w+2*t) * (0.707*Leg) Area of the weld Fw [lb] = Fv*Aw Allowable weld load CheckFw = W < Fw Minimum Weld Throat: 3-3.4.3 throat_3-3 [in] = IF(K14<=0.25,0.125,IF(K14<=0.5,0.188,(IF(K14<=0.75,0.25,(IF(K14<1.5,0.313)))))) check_throat = Leg*0.707 >=throat_3-3 12,000 3.5 5,714 Cumple 3.939 44,427 Cumple 58,000 9,667 7.424 71,761 Cumple 0.188 Cumple 10/5/2013, 3:03 PM Memoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo:  Atril de Armado de contraejes Fuller  5,000 3.6 4 Carga (Kg) Nd (2-2.1 o 2-2.2) Numero de orejas A36 55 50 20 77 6 E71T-1 Y 40 50 115 Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Cumple Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3.4.3 Cumple Cumple Cumple Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Nd factor de Diseño (para. 3-1.3) 2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la ca rga y condiciones ambientales se definen con precisión o no grave. 2.00  para los estados límite de fluencia o pandeo, 2.40  para los estados límite de fractura y para el diseño de conexión. 2-2.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión. 3.00  para los estados límite de fluencia o pandeo, Elaborado por: Luis Enrique Aguilar Montoya 3.60  para los estados límite de fractura y para el diseño de conexión. Inspector QA/QC FLSmidth 18 de 69 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 Material 7 36,000 Fy [psi] 8 58,000 Fu [psi] 29,000,000 E [psi] 9 Limite elastico Resistencia a la traccion Modulo de Elesticidad Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 E7018/E71T-1 58,000 70,000 10 Dimensiones: 11 2.17 12 6.10 0.79 13 14 3.03 15 0.24 16 17 18 19 20 21 22 23 24 25 Dh [in] Diametro de agujero w [in] Ancho de oreja t [in] Espesor de oreja R [in] Radio Exterior de oreja Leg [in] Altura de filete de soldadura Esfuerzo de Traccion: Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) A [in^2] = t*(w-Dh) Area en tension St [psi] = W/A Esfuerzo de traccion CheckSt = St < Ft Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) psi in^2 psi 10,000 3.10 3,556 Cumple in^2 3.568 lb 33 536 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 Material 7 36,000 Fy [psi] 8 58,000 Fu [psi] 29,000,000 E [psi] 9 Limite elastico Resistencia a la traccion Modulo de Elesticidad Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 E7018/E71T-1 58,000 70,000 10 Dimensiones: 11 2.17 12 6.10 0.79 13 14 3.03 15 0.24 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Dh [in] Diametro de agujero w [in] Ancho de oreja t [in] Espesor de oreja R [in] Radio Exterior de oreja Leg [in] Altura de filete de soldadura Esfuerzo de Traccion: Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) A [in^2] = t*(w-Dh) Area en tension St [psi] = W/A Esfuerzo de traccion CheckSt = St < Ft Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) CheckPv = W < Pv Esfuerzo Cortante en la Soldadura: Exx [psi] = Fu si Fu=garganta_3-3 19 de 69 psi in^2 psi 10,000 3.10 3,556 Cumple in^2 3.568 lb 33,536 Cumple psi psi in^2 lb 58,000 8,056 2.301 18,538 Cumple in 0.125 Cumple 10/5/2013, 3:03 PM Memoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo:  Atril de Armado de contraejes Fuller  5,000 3.6 4 Carga (Kg) Nd (2-2.1 o 2-2.2) Numero de orejas A36 55 50 20 77 6 E71T-1 Y 40 50 115 Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Cumple Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3.4.3 Cumple Cumple Cumple Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Nd factor de Diseño (para. 3-1.3) 2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la ca rga y condiciones ambientales se definen con precisión o no grave. 2.00  para los estados límite de fluencia o pandeo, 2.40  para los estados límite de fractura y para el diseño de conexión. 2-2.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión. 3.00  para los estados límite de fluencia o pandeo, Elaborado por: Luis Enrique Aguilar Montoya 3.60  para los estados límite de fractura y para el diseño de conexión. Inspector QA/QC FLSmidth 32 de 69 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 Material 7 36,000 Fy [psi] 8 58,000 Fu [psi] 29,000,000 E [psi] 9 Limite elastico Resistencia a la traccion Modulo de Elesticidad Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 E7018/E71T-1 58,000 70,000 10 Dimensiones: 11 2.17 12 6.10 0.79 13 14 3.03 15 0.24 16 17 18 19 20 21 22 23 24 25 Dh [in] Diametro de agujero w [in] Ancho de oreja t [in] Espesor de oreja R [in] Radio Exterior de oreja Leg [in] Altura de filete de soldadura Esfuerzo de Traccion: Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) A [in^2] = t*(w-Dh) Area en tension St [psi] = W/A Esfuerzo de traccion CheckSt = St < Ft Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) psi in^2 psi 10,000 3.10 3,556 Cumple in^2 3.568 lb 33 536 10/5/2013, 3:03 PM 1 Oreja con conexión para grillete: ASME BTH-1 2 Descripcion: Atril de Armado de contraejes Fuller 3 11,023 W [lb] Peso de la carga 4 3.6 Nd Design factor 5 Material: 6 A36 Material 7 36,000 Fy [psi] 8 58,000 Fu [psi] 29,000,000 E [psi] 9 Material Fy [psi] Fu [psi] E [psi] Limite elastico Resistencia a la traccion Modulo de Elesticidad A36 36,000 58,000 A572 50,000 65,000 A516 16,000 30,000 29,000,000 29,000,000 9,800,000 E7018/E71T-1 58,000 70,000 10 Dimensiones: 11 2.17 12 6.10 0.79 13 14 3.03 15 0.24 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Dh [in] Diametro de agujero w [in] Ancho de oreja t [in] Espesor de oreja R [in] Radio Exterior de oreja Leg [in] Altura de filete de soldadura Esfuerzo de Traccion: Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) A [in^2] = t*(w-Dh) Area en tension St [psi] = W/A Esfuerzo de traccion CheckSt = St < Ft Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) CheckPv = W < Pv Esfuerzo Cortante en la Soldadura: Exx [psi] = Fu si Fu=garganta_3-3 33 de 69 1  Lifting L ug Lo ad Capacity Vs Crack length Calculation  Sample Calculation Thickness of Lug (t) Width of Lug (W) Radius of Circular Section (R) = = = 20 mm 200 mm 100 mm Diameter of Hole ( D h ) = 60 mm Diameter of Pin ( D  p ) = 57 mm Distance from centre of hole to Welding (h)=  Area of Cross Section = Length of Crack ( a ) = Distance from centre of hole to edge of crack = (D Temperature (T) Fracture Toughness ( k 1c  ) = = 100 mm h 20 x 200 = 4000  4.5 mm / 2 + a) = 15 o C    (60 + 0.2 T) Mpa. Sqrt(   For -140 < T < 150 K 1c  = 63 o C  1  Lifting L ug Lo ad Capacity Vs Crack length Calculation  Sample Calculation Thickness of Lug (t) Width of Lug (W) Radius of Circular Section (R) = = = 20 mm 200 mm 100 mm Diameter of Hole ( D h ) = 60 mm Diameter of Pin ( D  p ) = 57 mm Distance from centre of hole to Welding (h)=  Area of Cross Section = Length of Crack ( a ) = Distance from centre of hole to edge of crack = (D Temperature (T) Fracture Toughness ( k 1c  ) 100 mm h 20 x 200 = 4000  4.5 mm / 2 + a) = = 15 = o C    (60 + 0.2 T) Mpa. Sqrt(   For -140 < T < 150 K 1c  = 63 o C  Check For Geometry  We =R- D h /2  = 100 - 60/ 2 = 70 mm We =R- D h /2  = 100 - 60/ 2 = 70 mm We =R- D h /2  = 100 - 60/ 2 = 70 mm By Yeild Theory  Yeild Strength of Plate Effective width of plate Tensile Load capacity = = = 345 MPa 200 - 60- 2 x4.5 = 0.9 x 345 x 131 x 20/1000 = 131 By Fracture Theory  K 1c  = F d  = Where, F d  . . Sqrt (  p . a ) s  0.5 x (3 - d) [ 1 + 1.243 x (1 - d)  ]  d= a / (D h  / 2 + a) d= 4.5 / (60/ 2 + 4.5) F d  = = K 1c  =  63 = Load ( P) = 0.13 0.5 x (3 -0.13) [ 1 + 1.243 x (1 -0.13)^3 ]   = s  = 2.61 Load (P)  Area F d  . = . S q r t  (  P / 4000 = . a   ) 2.61 x 0.00025P x sqrt(3.1416 x 0.0045) 81 2  kN  0.0003 Temp = 30 Degree Celcius Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5 Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Theory  30 66 0.032 3.157 1492 31.5 30 66 0.048 3.059 1257 2 32 30 66 0.063 2.97 1121 2.5 32.5 30 66 0.077 2.89 1031 3 33 30 66 0.091 2.812 967 3.5 33.5 30 66 0.104 2.743 918 4 34 30 66 0.118 2.67 882   5 35 30 66 0.143 2.546 827   5.8 35.8 30 66 0.162 2.457   796 7 8 9 10 37 38 39 40 30 30 30 30 66 66 66 66 0.189 0.211 0.231 0.25 2.337 2.246 2.167 2.096         762 741 725 711 Temperatu re (T) o C  Fracture  Temp = 15 Degree Celcius Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5         Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Fracture  Theory  15 63 0.032 3.157 1424 31.5 15 63 0.048 3.059 1200 2 32 15 63 0.063 2.97 1070 2.5 32.5 15 63 0.077 2.89 984 3 33 15 63 0.091 2.812 923 3.5 33.5 15 63 0.104 2.743 876 4 34 15 63 0.118 2.67 842 4.5 34.5 15 63 0.13 2.61 812 6 36 15 63 0.167 2.434 754 7 37 15 63 0.189 2.337   727 8 38 15 63 0.211 2.246   708 9 39 15 63 0.231 2.167   692 10 40 15 63 0.25 2.096   678 Temperatu Temp = Zero Degree Celcius re (T) o C          Fracture  Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5 Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Theory  0 60 0.032 3.157 1356 31.5 0 60 0.048 3.059 1143 2 32 0 60 0.063 2.97 1019 2.5 32.5 0 60 0.077 2.89 937 3 33 0 60 0.091 2.812 879 3.5 33.5 0 60 0.104 2.743 834 3.7 33.7 0 60 0.11 2.711 821 5 35 0 60 0.143 2.546 6 36 0 60 0.167 2.434 7 37 0 60 0.189 2.337   693 8 38 0 60 0.211 2.246   674 9 39 0 60 0.231 2.167   659 10 40 0 60 0.25 2.096   646 Temperatu re (T) o C  Fracture    (D h / 2 + a) 1 31 1.5   752 718 Temp = -15 Degree Celcius Length of  Crack ( a ) (mm)   Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Fracture  Theory  -15 57 0.032 3.157 1289 31.5 -15 57 0.048 3.059 1086   2 32 -15 57 0.063 2.97 968   2.5 32.5 -15 57 0.077 2.89 890   3 33 -15 57 0.091 2.812 835   3.1 33.1 -15 57 0.094 2.796   826 4 34 -15 57 0.118 2.67   762 5 35 -15 57 0.143 2.546   715 6 36 -15 57 0.167 2.434 7 37 -15 57 0.189 2.337   658 8 38 -15 57 0.211 2.246   640 9 39 -15 57 0.231 2.167   626 10 40 -15 57 0.25 2.096   614 Temperatu re (T) o C  Temp = -30 Degree Celcius Length of  Crack ( a ) (mm) Fracture  Temperatu (D h / 2 + a) 682 re (T) o C  Fracture Toughness (  k 1c  ) Load (P) (kN) Fracture  d = a / (D h  / 2 + a) F d  Theory  1 31 -30 54 0.032 3.157 1221 1.5 31.5 -30 54 0.048 3.059 1029 2 32 -30 54 0.063 2.97 918 2.5 32.5 -30 54 0.077 2.89 843 2.6 32.6 -30 54 0.08 2.873 832 3.5 33.5 -30 54 0.104 2.743 751 4 34 -30 54 0.118 2.67   722 5 35 -30 54 0.143 2.546   677 6 36 -30 54 0.167 2.434 7 37 -30 54 0.189 2.337   623 8 38 -30 54 0.211 2.246   607 9 39 -30 54 0.231 2.167   593 10 40 -30 54 0.25 2.096   581 646 Temp = -45 Degree Celcius Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5   Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Theory  -45 51 0.032 3.157 1153 31.5 -45 51 0.048 3.059 971 2 32 -45 51 0.063 2.97 867 2.15 32.15 -45 51 0.067 2.947   842 3 33 -45 51 0.091 2.812   747 3.5 33.5 -45 51 0.104 2.743 4 34 -45 51 0.118 2.67   682 5 35 -45 51 0.143 2.546   639 6 36 -45 51 0.167 2.434 7 37 -45 51 0.189 2.337   589 8 38 -45 51 0.211 2.246   573 9 39 -45 51 0.231 2.167   560 10 40 -45 51 0.25 2.096   549 Temperatu re (T) o C  Fracture  709 610   Kawish Shaikh P.Eng. UofC  > Dh/4 ; Hence OK  LOAD (P) Crack Length (a)    0  m    0    1  m > 1.5xDh ; Hence OK  2  mm Both side of Hole 35 mm )    0  m    0    1  m 60 mm Dia. hole 200 mm (60 for Steel WT Caterary 4)  > Dh/2 ; Hence OK  < 5t ; Hence OK  > 2t ; Hence OK  mm 81 4  kN  P  Crack Lenth (a) Vs Tensile Load (P) Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 601 138 857 345 Net Section will Yeild before Fracture 510 137 851 345 Net Section will Yeild before Fracture 458 136 845 345 Net Section will Yeild before Fracture 424 135 838 345 Net Section will Yeild before Fracture 401 134 832 345 Net Section will Yeild before Fracture 383 133 826 345 Net Section will Yeild before Fracture 371 132 820 345 Net Section will Yeild before Fracture 354 130 807 345 Net Section will Yeild before Fracture 344 128.4 797 345 Net Section will Fracture 336 332 330 329 126 124 122 120 782 770 758 745 345 345 345 345 Net Net Net Net Section will Fracture Section will Fracture Section will Fracture Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 573 138 857 345 Net Section will Yeild before Fracture 487 137 851 345 Net Section will Yeild before Fracture 437 136 845 345 Net Section will Yeild before Fracture 405 135 838 345 Net Section will Yeild before Fracture 383 134 832 345 Net Section will Yeild before Fracture 366 133 826 345 Net Section will Yeild before Fracture 354 132 820 345 Net Section will Yeild before Fracture 344 131 814 345 Net Section will Fracture 327 128 795 345 Net Section will Fracture 321 126 782 345 Net Section will Fracture 317 124 770 345 Net Section will Fracture 315 122 758 345 Net Section will Fracture 314 120 745 345 Net Section will Fracture Theory  Yeild  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 546 138 857 345 Net Section will Yeild before Fracture 463 137 851 345 Net Section will Yeild before Fracture 416 136 845 345 Net Section will Yeild before Fracture 386 135 838 345 Net Section will Yeild before Fracture 364 134 832 345 Net Section will Yeild before Fracture 349 133 826 345 Net Section will Yeild before Fracture 344 132.6 823 345 Net Section will Fracture 321 130 807 345 Net Section will Fracture 312 128 795 345 Net Section will Fracture 305 126 782 345 Net Section will Fracture 302 124 770 345 Net Section will Fracture 300 122 758 345 Net Section will Fracture 299 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 519 138 857 345 Net Section will Yeild before Fracture 440 137 851 345 Net Section will Yeild before Fracture 396 136 845 345 Net Section will Yeild before Fracture 366 135 838 345 Net Section will Yeild before Fracture 346 134 832 345 Net Section will Yeild before Fracture 343 133.8 831 345 Net Section will Fracture 321 132 820 345 Net Section will Fracture 305 130 807 345 Net Section will Fracture 296 128 795 345 Net Section will Fracture 290 126 782 345 Net Section will Fracture 287 124 770 345 Net Section will Fracture 285 122 758 345 Net Section will Fracture 284 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 491 138 857 345 Net Section will Yeild before Fracture 417 137 851 345 Net Section will Yeild before Fracture 375 136 845 345 Net Section will Yeild before Fracture 347 135 838 345 Net Section will Yeild before Fracture 343 134.8 837 345 Net Section will Fracture 314 133 826 345 Net Section will Fracture 304 132 820 345 Net Section will Fracture 289 130 807 345 Net Section will Fracture 281 128 795 345 Net Section will Fracture 275 126 782 345 Net Section will Fracture 272 124 770 345 Net Section will Fracture 270 122 758 345 Net Section will Fracture 269 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 464 138 857 345 Net Section will Yeild before Fracture 394 137 851 345 Net Section will Yeild before Fracture 354 136 845 345 Net Section will Yeild before Fracture 345 135.7 843 345 Net Section will Fracture 310 134 832 345 Net Section will Fracture 296 133 826 345 Net Section will Fracture 287 132 820 345 Net Section will Fracture 273 130 807 345 Net Section will Fracture 265 128 795 345 Net Section will Fracture 260 126 782 345 Net Section will Fracture 257 124 770 345 Net Section will Fracture 255 122 758 345 Net Section will Fracture 254 120 745 345 Net Section will Fracture Crack Length (a) VS Lug Capacity (kN) for 30 oC 1600 1400 1200 1000     )    N     k     (     d    a    o    L Load (P) (kN) 800 Load (P) (kN) 600 400 200 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for 15 oC 1600 1400 1200 1000     )    N     k     (     d    a    o    L Load (P) (k 800 Load (P) (k 600 400 200 0 0 5 10 a (mm) 15 Crack Length (a) VS Lug Capacity (kN) for 0 oC 1600 1400 1200 1000     )    N     k     (     d    a    o    L Load (P) (k 800 Load (P) (k 600 400 200 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -15 oC 1400 1200 1000     )    N     k     (     d    a    o    L 800 Load (P) (k 600 Load (P) (k 400 200 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -30 oC 1400 1000     )    N     k     (     d    a    o    L 800 Load (P) (k 600 Load (P) (k 400 200 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -45 oC 1400 1200 1000     )    N     k     (     d    a    o    L 800 Load (P) (k 600 Load (P) (k 400 200 0 0 5 10 a (mm) 15 - Fracture Theory -Yeild Theory Crack Length (a) VS Lug Capacity (k ) - Fracture Theory 1600 1400 ) -Yeild Theory 1200 1000     )    N     k     (     d    a    o    L 800 600 400 200 0 0 2 4 6 a (mm) 8 10 ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory N) Temp = 30 Degree Celcius Temp = 15 Degree Celcius Temp = Zero Degree Celcius Temp = -15 Degree Celcius Temp = -45 Degree Celcius 12 Load (P) (kN) -Yeild Theory 1  Lifting L ug Lo ad Capacity Vs Crack length Calculation  Sample Calculation Thickness of Lug (t) Width of Lug (W) Radius of Circular Section (R) = = = 20 mm 200 mm 100 mm Diameter of Hole ( D h ) = 60 mm Diameter of Pin ( D  p ) = 57 mm Distance from centre of hole to Welding (h)=  Area of Cross Section = Length of Crack ( a ) = Distance from centre of hole to edge of crack = (D Temperature (T) Fracture Toughness ( k 1c  ) 100 mm h 20 x 200 = 4000  4.5 mm / 2 + a) = = 15 = o C    (40 + 0.2 T) Mpa. Sqrt(   For -140 < T < 150 K 1c  = 43 o C  Check For Geometry  We =R- D h /2  = 100 - 60/ 2 = 70 mm We =R- D h /2  = 100 - 60/ 2 = 70 mm We =R- D h /2  = 100 - 60/ 2 = 70 mm By Yeild Theory  Yeild Strength of Plate Effective width of plate Tensile Load capacity = = = 345 MPa 200 - 60- 2 x4.5 = 0.9 x 345 x 131 x 20/1000 = 131 By Fracture Theory  K 1c  = F d  = Where, F d  . . Sqrt (  p . a ) s  0.5 x (3 - d) [ 1 + 1.243 x (1 - d)  ]  d= a / (D h  / 2 + a) d= 4.5 / (60/ 2 + 4.5) F d  = = K 1c  =  43 = Load ( P) = 0.13 0.5 x (3 -0.13) [ 1 + 1.243 x (1 -0.13)^3 ]   = s  = 2.61 Load (P)  Area F d  . = . S q r t  (  P / 4000 = . a   ) 2.61 x 0.00025P x sqrt(3.1416 x 0.0045) 55 4  kN  0.0003 Temp = 30 Degree Celcius Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5 Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Theory  30 46 0.032 3.157 1040 31.5 30 46 0.048 3.059 876 2 32 30 46 0.063 2.97 2.5 32.5 30 46 0.077 2.89 3 33 30 46 0.091 2.812 3.5 33.5 30 46 0.104 2.743 4 34 30 46 0.118 2.67   615 5 35 30 46 0.143 2.546   577 5.8 35.8 30 46 0.162 2.457   555 7 8 9 10 37 38 39 40 30 30 30 30 46 46 46 46 0.189 0.211 0.231 0.25 2.337 2.246 2.167 2.096         531 517 505 495 Temperatu re (T) o C  Fracture    (D h / 2 + a) 1 31 1.5   782 718   674 640 Temp = 15 Degree Celcius Length of  Crack ( a ) (mm)   Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Fracture  Theory  15 43 0.032 3.157 972 31.5 15 43 0.048 3.059 819 2 32 15 43 0.063 2.97 2.5 32.5 15 43 0.077 2.89 3 33 15 43 0.091 2.812 3.5 33.5 15 43 0.104 2.743 4 34 15 43 0.118 2.67 4.5 34.5 15 43 0.13 2.61 554 6 36 15 43 0.167 2.434 515 7 37 15 43 0.189 2.337   496 8 38 15 43 0.211 2.246   483 9 39 15 43 0.231 2.167   472 10 40 15 43 0.25 2.096   463 Temperatu Temp = Zero Degree Celcius re (T) o C      731 672   630 598   575 Fracture  Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5 Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  Theory  0 40 0.032 3.157 904 31.5 0 40 0.048 3.059 762 2 32 0 40 0.063 2.97 2.5 32.5 0 40 0.077 2.89 3 33 0 40 0.091 2.812 3.5 33.5 0 40 0.104 2.743 556 3.7 33.7 0 40 0.11 2.711 547 5 35 0 40 0.143 2.546 6 36 0 40 0.167 2.434 7 37 0 40 0.189 2.337   462 8 38 0 40 0.211 2.246   449 9 39 0 40 0.231 2.167   439 10 40 0 40 0.25 2.096   431 Temperatu re (T) o C  Fracture    625     (D h / 2 + a) 1 31 1.5 586 501 479 Temp = -15 Degree Celcius Length of  Crack ( a ) (mm) 680 Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  -15 37 0.032 3.157 31.5 -15 37 0.048 3.059 2 32 -15 37 0.063 2.97 2.5 32.5 -15 37 0.077 2.89 3 33 -15 37 0.091 2.812   542 3.1 33.1 -15 37 0.094 2.796   536 4 34 -15 37 0.118 2.67   494 5 35 -15 37 0.143 2.546   464 6 36 -15 37 0.167 2.434 7 37 -15 37 0.189 2.337   427 8 38 -15 37 0.211 2.246   416 9 39 -15 37 0.231 2.167   406 10 40 -15 37 0.25 2.096   398 Temperatu re (T) o C  Temp = -30 Degree Celcius Length of  Crack ( a ) (mm)   836 705   629 578 443 Fracture  Temperatu (D h / 2 + a) Fracture  Theory  re (T) o C  Fracture Toughness (  k 1c  ) Load (P) (kN) Fracture  d = a / (D h  / 2 + a) F d  Theory  1 31 -30 34 0.032 3.157   1.5 31.5 -30 34 0.048 3.059 2 32 -30 34 0.063 2.97 2.5 32.5 -30 34 0.077 2.89 531 2.6 32.6 -30 34 0.08 2.873 524 3.5 33.5 -30 34 0.104 2.743 473 4 34 -30 34 0.118 2.67   454 5 35 -30 34 0.143 2.546   426 6 36 -30 34 0.167 2.434 7 37 -30 34 0.189 2.337   392 8 38 -30 34 0.211 2.246   382 9 39 -30 34 0.231 2.167   373 10 40 -30 34 0.25 2.096   366 648   578 407 Temp = -45 Degree Celcius Length of  Crack ( a ) (mm) (D h / 2 + a) 1 31 1.5 769 Fracture  Load (P) (kN) - Fracture Toughness (  k 1c  ) d = a / (D h  / 2 + a) F d  -45 31 0.032 3.157 31.5 -45 31 0.048 3.059 2 32 -45 31 0.063 2.97   527 2.15 32.15 -45 31 0.067 2.947   512 3 33 -45 31 0.091 2.812   454 3.5 33.5 -45 31 0.104 2.743 4 34 -45 31 0.118 2.67   414 5 35 -45 31 0.143 2.546   389 6 36 -45 31 0.167 2.434 7 37 -45 31 0.189 2.337   358 8 38 -45 31 0.211 2.246   348 9 39 -45 31 0.231 2.167   340 10 40 -45 31 0.25 2.096   334 Temperatu re (T) o C  Fracture  Theory    701 591 431 371 Kawish Shaikh P.Eng. UofC  > Dh/4 ; Hence OK  LOAD (P) Crack Length (a)    0  m    0    1  m > 1.5xDh ; Hence OK  2  mm Both side of Hole 35 mm )    0  m    0    1  m 60 mm Dia. hole 200 mm (40 for Steel W 350)  > Dh/2 ; Hence OK  < 5t ; Hence OK  > 2t ; Hence OK  mm 81 4  kN  P  Crack Lenth (a) Vs Tensile Load (P) Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 419 138 857 345 Net Section will Yeild before Fracture 355 137 851 345 Net Section will Yeild before Fracture 319 136 845 345 Net Section will Fracture 296 135 838 345 Net Section will Fracture 279 134 832 345 Net Section will Fracture 267 133 826 345 Net Section will Fracture 259 132 820 345 Net Section will Fracture 246 130 807 345 Net Section will Fracture 240 128.4 797 345 Net Section will Fracture 234 232 230 229 126 124 122 120 782 770 758 745 345 345 345 345 Net Net Net Net Section will Fracture Section will Fracture Section will Fracture Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 391 138 857 345 Net Section will Yeild before Fracture 332 137 851 345 Net Section will Fracture 298 136 845 345 Net Section will Fracture 276 135 838 345 Net Section will Fracture 261 134 832 345 Net Section will Fracture 250 133 826 345 Net Section will Fracture 242 132 820 345 Net Section will Fracture 235 131 814 345 Net Section will Fracture 223 128 795 345 Net Section will Fracture 219 126 782 345 Net Section will Fracture 216 124 770 345 Net Section will Fracture 215 122 758 345 Net Section will Fracture 214 120 745 345 Net Section will Fracture Theory  Yeild  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 364 138 857 345 Net Section will Yeild before Fracture 309 137 851 345 Net Section will Fracture 278 136 845 345 Net Section will Fracture 257 135 838 345 Net Section will Fracture 243 134 832 345 Net Section will Fracture 232 133 826 345 Net Section will Fracture 229 132.6 823 345 Net Section will Fracture 214 130 807 345 Net Section will Fracture 208 128 795 345 Net Section will Fracture 204 126 782 345 Net Section will Fracture 201 124 770 345 Net Section will Fracture 200 122 758 345 Net Section will Fracture 199 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 337 138 857 345 Net Section will Fracture 286 137 851 345 Net Section will Fracture 257 136 845 345 Net Section will Fracture 238 135 838 345 Net Section will Fracture 225 134 832 345 Net Section will Fracture 223 133.8 831 345 Net Section will Fracture 208 132 820 345 Net Section will Fracture 198 130 807 345 Net Section will Fracture 192 128 795 345 Net Section will Fracture 188 126 782 345 Net Section will Fracture 186 124 770 345 Net Section will Fracture 185 122 758 345 Net Section will Fracture 184 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 309 138 857 345 Net Section will Fracture 263 137 851 345 Net Section will Fracture 236 136 845 345 Net Section will Fracture 219 135 838 345 Net Section will Fracture 216 134.8 837 345 Net Section will Fracture 198 133 826 345 Net Section will Fracture 191 132 820 345 Net Section will Fracture 182 130 807 345 Net Section will Fracture 177 128 795 345 Net Section will Fracture 173 126 782 345 Net Section will Fracture 171 124 770 345 Net Section will Fracture 170 122 758 345 Net Section will Fracture 169 120 745 345 Net Section will Fracture Yeild  Theory  Theory  Stress in the Net  Section Effective width of  Plate (mm) Load (P) (kN) - Yeild  Yeild Stress Theory  (s) 282 138 857 345 Net Section will Fracture 239 137 851 345 Net Section will Fracture 215 136 845 345 Net Section will Fracture 210 135.7 843 345 Net Section will Fracture 188 134 832 345 Net Section will Fracture 180 133 826 345 Net Section will Fracture 174 132 820 345 Net Section will Fracture 166 130 807 345 Net Section will Fracture 161 128 795 345 Net Section will Fracture 158 126 782 345 Net Section will Fracture 156 124 770 345 Net Section will Fracture 155 122 758 345 Net Section will Fracture 155 120 745 345 Net Section will Fracture Crack Length (a) VS Lug Capacity (kN) for 30 oC 1200 1000     )    N     k     (     d    a    o    L 800 Load (P) (kN) 600 Load (P) (kN) 400 200 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for 15 oC 1200 1000     )    N     k     (     d    a    o    L 800 Load (P) (k 600 Load (P) (k 400 200 0 0 5 10 a (mm) 15 Crack Length (a) VS Lug Capacity (kN) for 0 oC 1000 900 800 700     )    N     k     (     d    a    o    L 600 Load (P) (k 500 Load (P) (k 400 300 200 100 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -15 oC 900 800 700 600     )    N     k     (     d    a    o    L Load (P) (k 500 400 Load (P) (k 300 200 100 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -30 oC 900 800 700 600     )    N     k     (     d    a    o    L Load (P) (k 500 400 Load (P) (k 300 200 100 0 0 5 10 15 a (mm) Crack Length (a) VS Lug Capacity (kN) for -45 oC 900 800 700 600     )    N     k     (     d    a    o    L Load (P) (k 500 400 Load (P) (k 300 200 100 0 0 5 10 a (mm) 15 - Fracture Theory -Yeild Theory Crack Length (a) VS Lug Capacity (k ) - Fracture Theory ) -Yeild Theory 1200 1000     )    N     k     (     d    a    o    L 800 600 400 200 0 0 2 4 6 a (mm) 8 10 ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory ) - Fracture Theory ) -Yeild Theory