Preview only show first 10 pages with watermark. For full document please download

Practica N°03 Flujo De Fluidos A Traves De Lechos Porosos

   EMBED


Share

Transcript

LABORATORIO N°03: INGENIERIA DE ALIMENTOS II FLUJO DE FLUIDOS A TRAVES DE LECHOS POROSOS I) INTRODUCCIÓN En este tema, se va a analizar la circulación de fluidos en contacto con sólidos. Cuando el fluido es un gas, los sólidos son lógicamente insolubles con el gas. Sin embargo, si el fluido es un líquido, puede ocurrir que parte de ese líquido entre a formar parte de las partículas sólidas, formando una entidad denominada agregado o flóculo, que tiene el comportamiento de un sólido, es decir, puede sedimentar. Por tanto, en primer lugar se describirán las partículas sólidas y sus características, y posteriormente se introducirán los agregados. II) OBJETIVOS  Aplicar lo estudiado en teoría acerca del fluido a través de lechos poroso  Hallar la constante de KOZENY en un tipo de lecho (K”)  Determinar el número de Reynolds modificados (Re’) y el coeficiente de fricción (f’) para un material alimenticio. alimenticio. III) FUNDAMENTO TEÓRICO 3.1 INTRODUCIÓN Un medio poroso es una fase sólida continua con muchos vacíos o poros. Ejemplos de medios porosos: arena, gravilla, esponjas, empaquetados.  lechos Los medios porosos pueden ser:    espacios ¾Impermeables Æ cuando los poros no están interconectados. ¾Permeables Æ cuando los poros están conectados. Las principales principales características características de un flujo en medio medio poroso, son:  ¾La fricción es mucho mayor de lo que sería en un flujo análogo sin medio poroso. El factor de fricción se calcula de manera diferente.  ¾La variación variación de la velocidad velocidad del fluido fluido a través de un medio poroso es despreciable comparada con la fricción. 3.2 DESCRIPCIÓN DEL MEDIO POROSO 3.2.1 POROSIDAD Estudio conceptual del medio poroso:  ¾Considerado como un sólido continúo con poros en su interior Æ medio poroso consolidado (permeable o impermeable).  ¾Considerado como una colección de partículas sólidas en un lecho empaquetado medio poroso no consolidado.  Propiedad clave del medio poroso æ porosidad  Velocidad de aproximación o superficial del fluido: sA  Velocidad intersticial: 3.2.2 DIÁMETRO HIDRÁULICO: Se considera el camino del flujo en el medio poroso como flujo en un conducto no circular, definiendo apropiadamente el diámetro hidráulico: Considerando el medio como una colección de partículas individuales: Partículas esféricas Partículas no esféricas Æ 3.2.3 FACTOR DE FRICCIÓN: Para un medio poroso el factor de fricción viene dado por: Donde el factor numérico 3 se suprime en los análisis teóricos. NÚMERO DE REYNOLDS: Para un medio poroso el número de Reynolds viene dado por: Donde el factor numérico 2/3 se suprime en los análisis teóricos. FLUJO LAMINAR: Por analogía con el flujo laminar en un tubo, el factor de fricción en flujo laminar es: Si se tiene en cuenta también la deformación por dilatación: Que es la ecuación de Blake-Kozeny, válida para Re MP<10. FLUJO TURBULENTO:  A números de Reynolds elevados el medio poroso puede considerarse como un conducto extremadamente rugoso, por lo que el flujo es totalmente turbulento y el factor de fricción es constante: Que es la ecuación de Burke-Plummer, válida para Re MP>1000. 3.3 PERMEABILIDAD  La permeabilidad K de un medio poroso, cuya unidad es el Darcy, se define como la constante de proporcionalidad que relaciona el caudal a través del medio con la caída de presión, el área transversal, la viscosidad del fluido y la longitud neta del flujo a través del medio: Expresión conocida como Ley de Darcy.  Empleando la ecuación de Blake-Kozeny para describir las pérdidas por fricción, e igualando el resultado con la ecuación de Bernouilli: Se forma que la permeabilidad se relaciona con el tamaño de la partícula y la porosidad del medio: 3.4 PARA LOS CALCULOS 1) De la ecuación de kozeny y carman:        Donde: Vp = velocidad del aire a través del lecho poroso cm/s X = porosidad del lecho - ∆P = caída de presión a través del lecho (dinas/cm 2) S = superficie especifica (cm-1) μ = viscosidad del aire 1.89x10 -4 (dina-s/cm2) K’ = constante de kezeny (adimencional) L = altura del lecho granular (cm) 2) El coeficiente de fricción modificado (f’) es i gual a:         Dónde: ρ = densidad del aire = 0.00129 g/cm 3 3) El número de Reynolds modificado (Re’) es:      IV) MATERIALES Y PROCEDIMIENTO 4.1 Materiales granulares:  Granos de soya 4.2 Equipos y otros materiales:  Compresor para disponer de aire Rotámetro para medir el aire Velocímetro para el aire Recipiente cilíndrico, con agujeros en fondo, en donde se deposita el material granular Probetas de 500ml y 100 ml. Soporte universal Manguera de goma Un tubo de vidrio en U para medir la ciada de presión a través del lecho   Regla   pinzas           4.2 Procedimientos  Armar el equipo de lechos porosos  Medir la longitud y diámetro del recipiente  Medir el diámetro del grano, tomar tres medidas y su promedio  Inflar aire al diferentes caudales, en cada caudal medir su velocidad y su valor en (-∆P)  Retirar los granos y medir su porosidad (X). V) CALCULOS 1. Determinar dimensiones del lecho   Su longitud (L) L= 10.1cm El diámetro del recipiente DL= 8cm 2. Medir el diámetro del material Dp= 0.63mm=0.063cm 3. Calculo de porosidad              Si tenemos en una probeta 700ml de agua y agregamos agua a un vaso precipitado que contiene granos de soyaque tien un volumen de 570ml, y queda en la probeta 488ml entonces observaremos el volumen hueco que es la resta: 700ml – 488= 212ml Por lo tanto volumen hueco= 212ml Volumen del lecho= 570      Equivalente al 30% 4. Calculo de superficie especifica (S)            Considerando los granos como esfera.     Dónde: D = diámetro del material granular. Dp= 0.063cm       -1 5. Calculo del diámetro equivalente (Dm)          6. Caculo de la velocidad promedio a través del lecho (Vp)    (  )                  7. Calculo del caudal del aire que ingresa al equipo, con el rotámetro de acuerdo al método siguiente: El caudal se determina para cada índice de Rotámetro (I.R) Observar el índice del rotámetro luego de graduar el ingreso del gas, calibrando previamente el rotámetro, utilizando un velocímetro de aire. Encontrar el caudal del aire con la curva de calibración del rotámetro. Anotar las lecturas del manómetro (en cm de H2O) Completar los datos del cuadro que se adjunta, para cada material utilizado.     8. Calculo k´                                                                                                        9. Cálculo Re´                                                                         10. Calculo f´                                                                                                                                                                                 VI) RESULTADOS Suceso I. R (L/h) 0 1 2 100 3 200 4 300 5 400 6 500 7 600 8 700 9 800 -∆P -∆P Q V Vp K´ (Kpas) (dinas/cm²) (L/min) (cm/seg) (cm/seg) Re´ f´ 0 0.1 0.2 0.4 0.5 0.7 0.9 1.1 1.4 0 0 1.6836 3.7880 5.4716 7.1551 9.2596 12.2058 13.0476 0 0 0.5916 0.1169 0.0560 0.0328 0.0196 0.0113 0.0099 0 1000 2000 4000 5000 7000 9000 11000 14000 0 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 0.0 0.0 40 90 130 170 220 290 310 0 0 14.8 33.3 48.1 62.9 81.4 107.3 114.7 0 0 0.9960 0.8854 0.7662 0.8203 0.8149 0.7556 0.8996 a) Índice rotacional Vs caudal (lit/min) b) K’ Vs (-∆P) (dinas/cm²) c) F’ Vs Re’ en papel doble logaritmo VII) VIII) CONCLUSIONES  El flujo de fluidos a través de un medio poroso es un fenómeno que ocurre constantemente en un yacimiento de hidrocarburos, donde los fluidos son el aceite, gas y agua y el medio poroso es la roca que los almacena. A la hora poner a producir un pozo es que se evidencia este fenómeno, en la medida que los fluidos ascienden hasta superficie, estos a su vez hacen un desplazamiento a través de esos pequeños intersticios o poros de la roca, abriéndose camino hasta la cara del pozo  Los principios fundamentales que permiten representar el movimiento de los fluidos en un yacimiento son la Conservación de la Masa, Momento y Energía. Como el fenómeno es enfocado al flujo de fluidos a través de un medio poroso, el principio de la Conservación del Momento es reemplazado por una ecuación más experimental como lo es la Ley de Darcy. Adicionalmente a estas relaciones que se han establecido hasta ahora, hay que tener muy en cuenta las propiedades físicas de los fluidos del sistema, pues deberían estar representados como funciones de las variables independientes. RECOMENDACIONES  Tener cuidado en la toma de datos  Tener cuidado en el manipuleo del equipo IX) BIBLIOGRAFIAS  Circulación de fluidos a través de lechos porosos - Scribd es.xdocs.com/doc/70011664/Circulaciondefluidosatravesdelechosporosos  Presentación en flujo de medio Poroso - Web del Profesor webdelprofesor.ula.ve/ingenieria/jesusf/OP1-001FlujoMedioP.pdf   flujo en medio poroso - Web del Profesor webdelprofesor.ula.ve/ingenieria/hectr/Medio_Poroso.pdf   Operaciones unitarias en la ingeniería de alimentos books.google.com/books?isbn=8484761630  Flujo a través de medios porosos. Ley de Darcy, ecuación ... www.itescam.edu.mx/principal/sylabus/fpdb/recursos/r88750.PDF