Preview only show first 10 pages with watermark. For full document please download

33471063 Sc Physics Formulas

PHYSICS

   EMBED


Share

Transcript

PHYSICAL CONSTANTS Acceleration due to gravity g 9 .8 m / s N A Avogadro’s number  ELECTROMAGNETIC CONSTANTS  WAV EL EN GT HS OF LI GH T IN A VAC UU M (m) 2 6.022 022 ×  × 10  10 23 molecules/ molecules /mol Coulomb’s constant  k 9 × 10  ×  10 9 N · m2 /C2 Gravitational constant  G 6.67 × 67 × 10  10 h Planck’s constant  6.63 × 63 × 10  10 N · m2 /kg 2 11 − 34 − Ideal gas constant  R Permittivity of free space ε0 8.8541 × 8541 × 10  10 Permeability of free space µ0 4π  × 10  ×  10 J ·s 8.314 J/ J/(mol· (mol · K) = 0 .082 atm· atm · L/(mol· (mol · K) 7 − 12 − C/(V· (V · m) Wb/ Wb/(A· (A · m) 6.5 – 7.0 × 10  ×  10 − 7  ×  10 Orange 5.9 – 6.5 × 10 − 7  Yellow 5.7 – 5.9 × 10  ×  10 − 7 Green 4.9 – 5.7 × 10  ×  10 − 7 Blue 4.2 – 4.9 × 10  ×  10 − 7  Violet  4.0 – 4.2 × 10  ×  10 − 7 Red  ƒ = frequency (in Hz) 108 109 1010 1011 1012 radio   microwav microwaves es waves 1 10-1 10-2 = wavelength (in m) 10-3 1013 1014 1015   infrar infrared ed 10-4 10-5 1016 1018 10-7 R 10-8 O Y G 1019 20 10   gamma X rays rays ultraviolet  10-6 10-9 B 10-10 I 10-11 10-12 V   = 780 nm  visible light  360 nm INDICES OF REFRACTION FOR COMMON SUBSTANCES SUBSTANCES ( l = 5.9 X 10 Air  1.00 Alcohol 1.36 Corn oil 1.47 1.47 Diamond Water  2.42 1.33 Glycerol 1017 –7 m) 331 m/s Speed of sound at STP Speed of light in a vacuum c 3.00 × 00 × 10  10 8 m/s Electron charge e 1.60 × 60 × 10  10 Electron volt  eV 1.6022 × 6022 × 10  10 u Atomic mass unit  REFLECTION AND REFRACTION θincident  =  θ reflected  c (v is the speed of light in the medium) Index of refraction n  = v C 19 − J 1 .6606 × 6606 × 10  10 27 kg = 931. 931.5MeV 5MeV/c /c2 − 31 mp 1.6726 × 6726 × 10  10 27 kg = 1 .00728 u = 938. 938.3MeV 3MeV/c /c2 Opticall instrume Optica instrument nt Lens: Concave Convex 27 1.6750 × 6750 × 10  10 kg = 1 .008665 u 2 = 939. 939.6MeV 6MeV/c /c 5.976 976 ×  × 10  10 24 kg Radius of Earth 6.378 378 ×  × 10  10 6 m 1 − normal 0 2 angle of angle of  0  reflection '   refraction refracted ray reflected ray   n2 n1 LENSES AND CURVED MIRRORS 1  1 1  +  =  p q  f  − Mass of Earth θc  = sin Critical angle − angle of  incidence 0 1 n1 sin θ1  =  n 2 sin θ2 Snell’s Law − 9.11 × 11 × 10  10 kg = 0 .000549 u = 0 .511 MeV/c MeV /c2 …of neutron incident ray Law of Reflection me Rest mass of electron ...of  proton 19 − OPTICS image size q   =  − object size  p Focal Foc al distan distance ce f  Image distance q   Type of image negative positive negative (same side) nega negati tive ve (sam (samee sid side) e) positi positive ve (oppo (opposit sitee side) side) virtual, erect virt virtua ual, l, erec erectt real, real, inver inverted ted p < f   p > f   1 p  2 3 h  V  F  Mirror: Convex negative Concave positive negative (opposite side) virtual, erect  4 negati negative ve (oppos (opposite ite side) side) posi positi tive ve (sam (samee side side)) virtua virtual, l, erect erect real real,, inve invert rted ed 5 q  p < f   p > f  DYNAMICS 6 6 NEWTON’S LAWS 1. Firs Firstt Law: Law: An  An object re mains in its state of rest or motion with constant velocity unless acted upon by a net external force.  dp F  = F  = 2. Second Second Law: Law: F net net  =  ma dt 3. Third rd Law Law:: For every action there is an equal and opposite reaction. Normal force F  p   1 V  V  F N  =  mg cos  mg  cos θ (θ is the angle to the horizontal) p  q  Kinetic friction  f k  =  µ k F N µs is the coefficient of static friction. µk is the coefficient of kinetic friction. For a pair of materials, µk  < µs . Notation ˆ  =  a xˆi + a yˆi + a z k a  = a Magnitude    + a  + a a  = |  =  | a|  = a  + a  +  a Dot product   =  a x bx  + a  +  a y by  + a  +  az yz a · b  = a 2 x (θ is the angle between a and b) |a ×  b |  = ab  =  ab sin θ a ×  b points in the direction given by the right-hand rule: 2 y 2 z =  ab cos θ Cross product a x b W  = W  =  1 p2 mv 2 = 2 2m Gravitational potential energy b �� �� �� 5 P avg avg  = Instantaneous power  Change in velocity P  = P  =  F  · v MOMENTUM AND IMPULSE  =  m v p = m Impulse J  =  F t  = ∆p J  =   dt  = ∆ p F dt = COLLISIONS m 1 v1  + m  +  m 2 v2  =  m 1 v1  + m  +  m2 v2 � All collisions 1  1  1  1 2 2 m1 v12 + m2 v22  = m1 (v  ( v1 ) + m2 (v  (v2 ) 2 2 2 2 � � v1  − v  −  v 2  =  − (v1 − v  −  v 2 )   aavg  = v dt  ∆ v ∆t t (s)  VELOCITY  v  (m/s) + t (s) ∆v  =   CONSTANT  AC CE LE RAT IO N vf  =  v 0  + at  +  at  1 vavg  = (v0  + v  +  v f ) 2 a dt – ACCELERATION a  (m/s 2) +  1 s  = s  =  s 0  + v  +  v 0 t  + at 2 � Elastic collisions � DISTANCE s (m) Instantaneous  d v a  = acceleration dt  ∆ W  ∆t Linear momentum  ∆ s ∆t vavg  = Average acceleration Average power  F  q  Instantaneous  d s v  =  velocity dt U g  =  mgh E  =  =  KE  +  U  V  p  KINEMATICS Displacement  ∆s  =  Total mechanical energy h  F  4 Average  velocity F · d  ·  ds ∆ U  =  =  −W   − W  a  −  a z by ) ˆi + (a ( az bx  − a  −  a x bz ) jˆ + (a ( ax by  − a  −  a y bx ) ˆ a ×  b  = (ay bz  − a k ax a y a z = ax a y b z ˆi ˆ  jˆ k �� �� ��   KE  = Kinetic energy a b F  V  p  q  3 (for conservative forces)  VE CT OR FO RM UL AS h  F  W  = W  =  F  · s  = F  =  F s cos θ Work Potential energy    5    9  .    3    $ q  V  q  Work-Energy Theorem W  = W  = ∆KE  UNIFORM CIRCULAR MOTION  v 2  mv 2 Centripetal acceleration  a c  = Centripetal force F c  = r r F  p  2 FRICTION Static friction f s, s, max  =  µ s F N    N    A    C    5    9  .    5    $ F   WO RK , EN ER GY, PO WE R F w  =  mg Weight  h  h  �  1 =  s 0 − v  −  v f t + at 2 =  s 0  + v  +  v avg t vf 2  =  v 02 + t (s) – 2 a(sf  −  s 0 ) CONTINUED ON OTHER SIDE This downloadable PDF copyright © 2004 by SparkNotes LLC. SPARK CHARTS CHARTS™ Physics Formulas page 1 of 2  WAV ES ELECTRICITY  Amplitude A Frequency f  Wavelength λ T  =  1 f  = Period T   2 π Angular frequency ω ω  = 2πf  = ω  2 π  Tension in string  F T  x  − T t λ   mass length Mass density µ  = Length  L   F T  µ Speed of standing wave v  = Wavelength of standing wave λn  =  2 L f beat  = |f 1 − f 2 | DOPPLER EFFECT Motion of source Stationary Motion of observer  Stationary Toward obser ver at vs Away from obser ver at vs v veff  =  v veff  =  v λ λeff  =  λ f f eff  =  f  veff  =  v  + vo λeff  =  λ f eff  =  f  v+v v Towards source at vo v −v v λeff  =  λ v v −v f eff  =  f  �    s s o λeff  =  λ Away from source at vo veff  =  v − vo λeff  =  λ f eff  =  f  v−vv f eff  = f  �  o ω  = Angular velocity Angular acceleration αavg  =  s  ∆ ω ∆t r v  = ωf  =  ω 0  +  αt R  R    I  = r 2 dm sphere � g v  = 0 U  = max KE  = 0 5 U e  = v  = 0 U  = max KE  = 0 I  = Resistance R  =  ρ Ohm s Law I  = Power dissipated by resistor  P  =  V I  =  I 2 R Heat energy dissipated by resistor  W  =  P t  =  I 2 Rt L A V   R Series circuits I eq  =  I 1  =  I 2  =  I 3  =  . . . V  eq  =  V  1 +  V  2 +  V  3 + · · · Req  =  R 1  +  R 2 +  R 3  + · · · R 1 ML  MR  T  = 2π L rod TORQUE AND ANGULAR MOMENTUM  Torque τ  =  F r sin θ  d L τ  =  r × F τ  = dt τ  =  I α Angular momentum L  =  pr  sin θ L  =  r × p L  =  I ω KE rot  = 1 Iω 2 2 2π T  =    k m R 2 R 3 Magnetic force on moving charge F  =  qv B sin θ F  =  q  (v × B) Magnetic force on current-carrying wire F  =  B I� sin θ F  =  I  ( � × B) MAGNETIC FIELD PRODUCED BY… P V   =  nRT  Combined Gas Law P 1 V  1  P 2 V  2 = T 1 T 2  µ 0 q v × ˆ r 4π r 2 Magnetic field due to a moving charge B = Magnetic field produced by a current-carrying wire B  = Magnetic field produced by a solenoid B  =  µ 0 nI  Biort-Savart Law dB  = µ0 I  2π r  µ 0 I  (d� × ˆ r) r2 4π ε  = − Lenz s Law and Faraday s Law ’ ’   m k           E · dA  = 1. First Law ∆ (Internal Energy) = ∆Q + ∆ W  2. Second Law: All systems tend spontaneously toward maximum entropy.  ∆ Qout  Alternatively, the efficiency e  = 1 − ∆Qin of any heat engine always satisfies 0 ≤ e <  1 . Boyle s Law P 1 V  1  =  P 2 V  2 Charles s Law P 1  P 2 = T 1 T 2 ’ ’ This downloadable PDF copyright © 2004 by SparkNotes LLC.  Q enclosed ε0    r    e     l    t    s    s   e     l    e   K    i    n   n    a   i    D   t    s    t    J    u    y    t  ,    k    a  ,    r    s    M    e   v    g    n   o  ,    r    e    w     d    s    b    o   e    m     d    v    D    s   i    e    a    i  .    d     l    r     l    i    F    K   e   m     l    M    a     l     h    i    W     l    e   a    l  .    a    i    r    n    O    n    r    a    e   n   W  .    n   S    B   A   O   :    a   s   :    D    r    s    n   :    r    o    t    o    a   n   i    t    o   d    u    D   :    i    t    E    b    n   a   s    i    r    g    t    t    i    i    r    e    n    s   s   r    u   e    o    e   l    l    S    C    D   I B · dA = 0 Gauss s Law for magnetic fields ’ s ∂ ΦB ∂  =− E · ds = − ∂t ∂t c Faraday s Law ’   B · dA s B · ds  =  µ 0 I enclosed Ampere s Law ’ c B · ds  =  µ 0 I enclosed  +  µ0 ε0 Ampere-Maxwell Law c ∂  ∂t   E · dA s GRAVITY  m 1 m2 r2 Newton s Law of Universal Gravitation F  =  G Acceleration due to gravity a  = Gravitational potential U (r ) = − Escape velocity vescape  = ’ and A  = (∆x)max is the amplitude. THERMODYNAMICS dΦB dt MAXWELL’S EQUATIONS s is the angular frequency  GAS LAWS Universal Gas Law R 3 R 1 ’ x  =  A sin( ωt ) Equation of motion  where ω  = R 2 Parallel circuits I eq  =  I 1  +  I 2  +  I 3 + · · · V  eq  =  V  1  =  V  2  =  V  3  =  . . . 1 1 1 1 = + + + ··· Req R1 R2 R2 Gauss s Law  1 k (∆x)2 2 2 disk Rotational kinetic energy v  = max U  = min KE  = max MASS-SPRING SYSTEM Restoring force F  = −k (∆) x ∆x is the distance the spring is stretched or compressed from the equilibrium position, and k is the spring constant. Period 2 MR   ∆ Q ∆t Current  MAGNETISM mg  cos 0       S      T      R      A      H      C      K      R      A      P      S      M      T CIRCUITS mg  sin 0  2 12 R  R  ring  W  q   T    Elastic potential energy 1 2 MR  2 s equilibrium position MOMENTS OF INERTIA ( I  ) 1 ∆V   = F  =  E q  q  m g  ωf 2  =  ω 02 + 2 α(θf  − θ0 ) 2 Potential difference  F on q o 0  =  θ 0 +  ω avg t MR 2 v ±v v ±v 2g� (1 − cos θmax )  1 αt 2 particle s   T  = 2π  1 ωavg  = (ω0  +  ω f ) 2 E  = KIRCHHOFF’S RULES Loop rule: The sum of all the (signed) potential differences around any closed loop is zero. Node rule: The total current entering a juncture must equal the total current leaving the juncture. v ±v v �  Period a Moment of inertia s  Velocity at equilibrium position  v CONSTANT θ  =  θ 0 +  ω 0 t + v v+v PENDULUM r  dθ ω  = dt  a t α  = r  dω α  = dt  ∆ θ ωavg  = ∆t s SIMPLE HARMONIC MOTION θ  = Angular position v+v v �    veff  = v ± vo �  ROTATIONAL MOTION Electric field 1 q 1 q 2 q 1 q 2 = 4πε 0 r2 r2 ’ n SOUND WAVES Beat frequency F  =  k ’ � �   WAVE ON STR IN G Coulomb s Law T  Wave speed v  =  f λ Wave equation y (x, t) =  A sin(kx − ωt ) =  A sin 2π ELECTROSTATICS    s    r    o    r    r    e    t    /    a   m    o    s   c    r  .    o    s    r    r   e    e   t    t    o    r    n    o   k    p   r    e   a    R   p    s  .    w    w    w    N    A    C    5    9  .    5    $    5    9  .    3    $         4         0         4         3         6         3         3         9         5         0         2         7  GM Earth 2 rEarth GM m r   GM  r KEPLER’S LAWS OF PLANETARY MOTION 1. Planets revolve around the Sun in an elliptical path with the Sun at one focus. 2. The imaginary segment connecting the planet to the Sun sweeps out equal areas in equal time. 3. The square of the period of revolution is directly proportional to the cube of the length of  the semimajor axis of revolution: T 2 is constant. 3 a SPARK CHARTS™ Physics Formulas page 2 of 2