Preview only show first 10 pages with watermark. For full document please download

Here - Csh Consulting Llc

   EMBED


Share

Transcript

CSH Consulting, LLC Signal Integrity Consulting January 2015 www.cshconsulting.net [email protected]. 603-494-9277 Overview • High Speed Serial Channel Modeling – Ethernet, PCIe GenX, Fibre Channel, SAS, USB – Anything over 2Gb/s requiring frequency domain simulation and modeling. • High Speed Memory Simulation – DDR2, DDR3, DDR4 – Clock, Address, Data, Data Strobe – Buffer Strengths, On Die Termination, Topology, Waveform Integrity, Setup and Hold Mask Evaluations for DQ and Command/Control/Address. – Intelligent EBD file translation and debugging. • Power Integrity Simulation – DC Analysis and Frequency Response Analysis of Power Planes • CAD Guidelines – Concise recommendations for PCB Layout based on Pre-Layout Simulations. Simulation Capability • Software Resources –Agilent ADS • Statistical Eye simulation using IBIS-AMI Models –Ansys HFSS •3D Modeling of structures (vias, AC Caps, BGAs, Connectors) •3D Modeling of pcb etch. •In-house automation ensures faster response and consistency –Ansys SIwave •Power Plane Voltage Drop simulation •Power Plane Frequency analysis and decoupling capacitor optimization –Apsim RLGC •2D Modeling of PCB Transmission Lines •Frequency-dependent W-elements –HSpice •Time Domain Simulation using IBIS and AMI. •Frequency Domain Simulation – Concatenation of S-Parameters Channel Modeling - Process and Tools BGA Package BGA Via Transition Via PCB Etch Connector Footprint Connector Connector Footprint Backplane Etch BGA Package PCB Etch AC Cap PCB Etch Connector Footprint Connector • Link Models created in HSpice –Cascaded S-parameters of connector, footprint, etch • Connector Models –Provided by Connector Vendor in Touchstone format. • PCB Footprints –Simulated in Ansoft HFSS • Each one is different! • PCB Etch Models –Tabular W-element RLGC Models generated in Apsim RLGC. –De-Embedded S-parameter Model generated in HFSS Connector Footprint Passive Channel Design Drivers • Insertion Loss – Driven by PCB material property and via stubs. • Return Loss – Driven by Impedance mismatches mainly arising in component footprints. • Crosstalk – Unwanted electromagnetic coupling between traces, vias and connector contacts. • Skew – Driven by routing, connector, and PCB laminate material. • Common Mode Conversion and EMI – Driven by unbalanced differential pairs in routing and connectors. PCB Material Property Extraction From Measurements Insertion Loss vs PCB and Cable Material Loss Characteristic of 1m of Copper Medium 0 -5 -10 -15 High Confidence Region (< 30dB) -20 -25 Magnitude (dB) -30 Near Limit ( 30-40dB) -35 -40 No Operation -45 -50 -55 -60 -65 26AWG EXD Megtron-7NE RA Megtron-7NE Megtron-6 FlatBond -70 -75 -80 0 2.5 5 7.5 Length: 1m Line Width: 6.5mil Line Space: 8.5mil Copper Weight: ½ oz 10 12.5 15 Frequency (GHz) 17.5 20 22.5 25 Insertion Loss vs. Line Width Magnitude (dB) Megtron 6 Insertion Loss: 40 inches 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 sdd12-5p5 sdd12-6p5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Frequency (GHz) Crosstalk Sources 3h-5h h 1. Between Differential Pair Traces – Crosstalk Target < = -50dB 2. Between Vias in Footprint – Simulate and Tune • Antipad shapes • Drill size • Pad Size • Backdrill Depth 3. Within Connectors – Simulate and tune conductor geometry, plastic materials and return paths. FEXT Contributors (GH2 Driven) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 0 2 4 6 Frequency (Hz) 8 10 9 x 10 DC Blocking Capacitor Example Cap Clearance Finished Dia 6.0mil Diff Port Zo 100 Material Drill Dia 9.8mil Layer Escape 10 Dk 3.85 0.009 Pad Dia 20.0mil Line Width 9.00mil Df Antipad Dia 45.0mil EtchBack 0.1mil Layers Oval Dogbone 45.0mil Line Space 10.0mil Thickness Megtron-4 14 64.4 mil 0402 Layer 2 DC Blocking Capacitor Example Results Insertion Loss, Return Loss and TDR Differential Insertion and Return Loss: RX Cap L1 / L10 Escape 0 Time Domain Waveform: RX Cap L1 / 10 110 -10 105 Goal 100 95 -30 Ohms Magnitude (dB) -20 90 93 ohms -27dB at 6GHz 85 -40 80 -50 75 Simulated Differential TDR sdd12 70 sdd11 0 -60 0.05 0.1 0.15 Time(nS) 0 5 10 15 20 Frequency (GHz) 25 30 35 40 0.2 0.25 0.3 IEEE 802.3ap KR (10Gbps): Insertion Loss and ILD Channel Example Insertion Loss Deviation: Sim0102 R1 5 -5 4 -10 3 -15 2 Magnitude (dB) Magnitude (dB) Insertion Loss: Sim0102 R1 0 -20 -25 -30 -35 -40 -45 -50 0 1 0 -1 -2 -3 Simulated Link Simulated Link LS IL Mask High IL Mask Low 2 4 6 Frequency (GHz) -4 8 10 -5 1 Simulated Link IL Deviation High IL Deviation Low 2 3 4 Frequency (GHz) 5 6 IEEE 802.3ap KR (10Gbps): Return Loss and ICR Channel Example Return Loss: S im0102 R1 0 80 Simulated Link Return Loss Mask 70 -10 60 -15 50 Magnitude (dB) Magnitude (dB) -5 -20 -25 40 30 -30 20 -35 10 -40 10 -1 0 10 Frequency (GHz) 1 10 0 -1 10 Simulated Link Simulated Link LS ICR Mask 0 10 Frequency (GHz) 10 1 0 0 -10 -5 -20 -10 -30 -15 Magnitude (dB) Magnitude (dB) IEEE 802.3bj (25Gbps) Insertion and Return Loss Channel Example -40 -20 -50 -25 -60 -30 -70 -35 Simulated Link Simulated Link IL Mask RL Mask -80 -40 0 5 10 15 Frequency (GHz) sdd12=s16ptest.sdd(:,2,1); 20 25 0 5 10 15 20 Frequency (GHz) sdd11=s16ptest.sdd(:,2,2); 25 IEEE 802.3bj (25Gbps) Crosstalk and ICR Channel Example 0 0 Next1= 2,4. Next2= 2,8. Next4= 4,6. Fext3= 2,5. -5 -10 Next1x2, Next2x2, Next4x2, Fext3x2 -20 -15 -30 -20 Magnitude (dB) Magnitude (dB) -10 -40 -50 -60 -70 -25 -30 -35 -40 -45 -50 Next1 -80 -90 -100 30.0dB @ 12.5GHz 0 10 20 Frequency (GHz) 30 -55 Next2 Next4 -60 Fext3 -65 40 -70 Sdd21 TotalXTK:RMS 0 2 4 6 8 1012 141618 20222426 283032 343638 40 Frequency (GHz) Channel TDR Channel Example 110 105 100 Ohms 95 90 85 80 Simulated Differential TDR 75 0 1 2 3 4 Time (nS) 5 6 7 SIwave: Power Plane Voltage Drop SIwave: Power Plane Impedance vs. Frequency Power Plane Impedance at U2. File: ..\Plane_Only_SYZ.xls 1000 100 Impedance (ohms) 10 1 Goal: 0.080ohm @ 40.0MHz. 0.1 0.01 Plane Only Plane With Caps Goal 0.001 0.1 1 10 Frequency (MHz) 100 1000 ADS Schematic: 1 Million Bit-By-Bit Simulation Statistical Eye: 12.5Gbps 1 Million Bit-By-Bit Simulation Amplitude: 336mV Width: 63ps Width: 0.79UI Statistical Eye: 6.25Gbps Measurement vs. Simulation Measurement 240mV 0.76UI 162mV 0.70UI Simulation (from LinkEye) DDR3 Address Path Topology Example Micron v68a.ibs Input Model: INPUT_1333 0.75V Freescale P1021 U2 U3 N3 L6 0Ω U1 0.022” 40ohm 12 5.0mil FreeScale P1021 IBIS Model: P1021 Ibis Model.ibs Zo Layer Width N3 0.022” 0.540” Zo Layer Width Model: ddr3_drvr_40 N3 0.022” 1.446” U4 0.552” 40ohm 3 5.0mil 0.160” 39Ω Volts 1333 MT/s DDR3 Address/Clk Setup and Hold Margin MT41J64M16JT DDR3-1333 AC150 VIHAC 900 VIHDC 850 VREF 750 VILDC 650 VILAC 600 tIS 190+75 tIH 140+50 EBD-To-Spice File Converter • • • • EBD files can have branches to over 15 devices. EBD files are generated automatically and sometimes have errors that need to be checked and corrected. Automatic tools from simulators that read EBD files automatically cannot be trusted. EBD-2-Spice file converter – Creates RLC W-Elements for every section of etch – Correctly identifies capacitors, resistors and inductors. – Matches component names to device.ibs file and creates package models automatically. – Reduces what normally takes many hours into a few minutes. EBD-To-Spice File Converter EBD to Spice Converter Get EBD File Pin Node 1 Pin 4 MT18JDF51272PDZ-1G4D1.ebd 4 10 Resistor Value Pullup Voltage 120.0 ohm 3.30 v Pin 4 Len=0.45044 L=3.54838e-009 C=1.07537e-012 R=0.038347 / Len=0 R=15 / Len=0.08552 L=3.54838e-009 C=1.07537e-012 R=0.038347 / Len=0 C=1.06814e-014 / Len=0.10000 L=1.38170e-009 C=3.66257e-013 / Len=0 C=2.27241e-013 / Len=0.39175 L=4.08327e-009 C=1.17171e-012 R=0.153375 / Len=0 C=1.77130e-014 / Fork Len=0.10000 L=1.01349e-008 C=1.98847e-012 / Len=0 C=1.06814e-014 / Len=0.05459 L=3.54838e-009 C=1.07537e-012 R=0.038347 / Node U20.B3 Endfork Len=0.10000 L=1.38170e-009 C=3.66257e-013 / Len=0 C=1.06814e-014 / Len=0.05714 L=3.54838e-009 C=1.07537e-012 R=0.038347 / Node U1.C7 .SUBCKT MODULE DIMM U20DIE U1DIE $Pin 4 WElem1 N=1 10 0 11 0 RLGCFILE='.\Pin4\Pin4RLC1.rlc' L=0.45044 R2 11 12 15 WElem3 N=1 12 0 13 0 RLGCFILE='.\Pin4\Pin4RLC3.rlc' L=0.08552 C4 13 0 1.06814E-14 WElem5 N=1 13 0 14 0 RLGCFILE='.\Pin4\Pin4RLC5.rlc' L=0.1 C6 14 0 2.27241E-13 WElem7 N=1 14 0 15 0 RLGCFILE='.\Pin4\Pin4RLC7.rlc' L=0.39175 C8 15 0 1.7713E-14 $Fork 15 WElem10 N=1 15 0 16 0 RLGCFILE='.\Pin4\Pin4RLC10.rlc' L=0.1 C11 16 0 1.06814E-14 WElem12 N=1 16 0 17 0 RLGCFILE='.\Pin4\Pin4RLC12.rlc' L=0.05459 WP_U20 N=1 17 0 U20DIE 0 RLGCFILE='.\Pin4\U20-B3.rlc' L=1 B_U20 nd_puU20 nd_pdU20 U20DIE node_out_of_inU20 file='v69a.ibs' model='DQ' typ=typ $End Fork 15 WElem15 N=1 15 0 19 0 RLGCFILE='.\Pin4\Pin4RLC15.rlc' L=0.1 C16 19 0 1.06814E-14 WElem17 N=1 19 0 20 0 RLGCFILE='.\Pin4\Pin4RLC17.rlc' L=0.05714 WP_U1 N=1 20 0 U1DIE 0 RLGCFILE='.\Pin4\U1-C7.rlc' L=1 B_U1 nd_puU1 nd_pdU1 U1DIE node_out_of_inU1 file='v69a.ibs' model='DQ' typ=typ .ENDS MODULE Files Created