Preview only show first 10 pages with watermark. For full document please download

Homework 9

   EMBED


Share

Transcript

Classical Mechanics - Homework Assignment 9 Alejandro G´ omez omez Espinosa ∗ November 29, 2012 Goldstein, Ch.9, 11 Determine whether the transformation is canonical  p1  p2 +1 q 2 q 1 q 2 p2 q 1 p1 P 2 = + (q 2 + q 1 ) q 2 q 1 Q1 = q 1 q 2 − − P 1 = Q2 = q 1 + q 2 − − To determine if this transformation is canonical, let us use the Poisson brackets: ∂u ∂v ∂q i ∂p i [u, v]q,p = ∂u ∂v − ∂p ∂q  i i Then, [Q1 , P 1 ]q,p = ∂Q 1 ∂P 1 ∂q 1 ∂p 1 = q 2  q 2 = =   − q  2 − q  1 1 q 2 − q  1 −    − − − − − [email protected] 1 1 2 ∂P 1 ∂q 2 − ∂Q ∂p 1 2 ∂P 2 ∂q 2  ∂Q 2 ∂P 2 ∂Q 2 ∂P 2 ∂Q 2 ∂P 2 + ∂q 1 ∂p 1 ∂p 1 ∂q 1 ∂q 2 ∂p 2 q 1 q 1 + q 2 q 1 q 2 q 1 − − ∂Q ∂p  − = 0 ∗ ∂P 1 ∂Q 1 ∂P 1 + ∂q 1 ∂q 2 ∂p 2 ∂Q 1 ∂P 2 ∂Q 1 ∂P 2 ∂Q 1 ∂P 2 + ∂q 1 ∂p 1 ∂p 1 ∂q 1 ∂q 2 ∂p 2 q 1 q 2 q 2 + q 1 q 2 q 1 q 2 q 1 = 0 [Q2 , P 2 ]q,p = 1 1 1 = 0 [Q1 , P 2 ]q,p = − ∂Q ∂p − ∂Q ∂p 2 2 ∂P 2 ∂q 2 [Q2 , P 1 ]q,p = = ∂Q 2 ∂P 1 ∂q 1 ∂p 1 − ∂Q ∂p ∂P 1 ∂Q 2 ∂P 1 + ∂q 1 ∂q 2 ∂p 2 2 1 − ∂Q ∂p 2 2 ∂P 1 ∂q 2 1 1 − q  − q  q  − q  2 1 2 1 = 0 [P 1 , P 2 ]q,p = = ∂P 1 ∂P 2 ∂P 1 ∂P 2 ∂P 1 ∂P 2 ∂P 1 ∂P 2 + ∂q 1 ∂p 1 ∂p 1 ∂q 1 ∂q 2 ∂p 2 ∂p 2 ∂q 2 1 p1  p2 q 1 p1 2 q 2 q 1 q 2 q 1 (q 2 q 1 ) (q 2 q 1 )2 −  − − + p1 (q 2 = 0 [Q1 , Q2 ]q,p = − − p − q  ) 2 1   − − − − − −  q   1  p − q  − q  − q  − q  (q  − q  ) − 1 2 2  −1  2 ∂Q 1 ∂Q 2 ∂q 1 ∂p 1 2 1 − ∂Q ∂p 1 1 2 1 ∂Q 2 ∂Q 1 ∂Q 2 + ∂q 1 ∂q 2 ∂p 2 2 1 − ∂Q ∂p 1 2 2 ∂Q 2 ∂q 2 = 0 Since [Q1 , P 1 ] = [Q1 , P 2 ] = [Q2 , P 1 ] = [Q2 , P 2 ] = [Q1 , P 2 ] = [P 1 , P 2 ] = 0, therefore this transformation is canonical. Goldstein, Ch.9, 17 Show that the Jacobi identity is satisfied if the Poisson bracket sign stands for the  commutator of two square matrices: [A, B] = AB − BA (1) Show also that for the same representation of the Poisson bracket that  [A, BC] BC] = [A, B]C + B[A, C] The Jacobi identity is given by: [A, [B, C ]] ]] + [B, [C, A]] + [C, [A, B ]] = 0 then, if (1 (1) is satisfied: [A, [B, C ]] = [A,BC  = = − CB ] A(BC  − CB ) − (BC  − CB )A ABC  − ACB − BC A + CB A [B, [C, A]] = [B , C A = = − AC ] B (CA − AC ) − (CA − AC )B BC A − BAC  − CAB + ACB 2 (2) [C, [A, B ]] = [C,AB − BA] C (AB − BA ) − (AB − BA )C  CAB − C BA − ABC  + BAC  = = where is easy to see that all the terms will vanish. For (2 (2): [A, B ]C  + B [A, C ] = ABC  − BAC  + BAC  − BC A ABC  − BC A = = [A,BC ] Goldstein, Ch.9, 22 For the point transformation in a system of two degrees of freedom, Q1 = q 12 , Q2 = q 1 + q 2  find the most general transformation equations for  P 1 and  P 2 consistent with the overall transformation being canonical. Show that with a particular choise for  P 1 and  P 2 the Hamiltonian  H  =   p1 − p 2 2 2q 1  + p2 + (q 1 + q 2 )2 can be transformed to one in which both  Q1 and  Q2 are ignorable. By this means solve the problem  and obtain expressions for  q 1, q 2 , p1 , and  p2 as functions of time and their initial values. Using the relations for a point transformation: Q1 = Q2 = ∂F 2 = q 12 ∂P 1 ∂F 2 = q 1 + q 2 ∂P 2 Then, the generating function must be: F 2 = q 12 P 1 + (q 1 + q 2 )P 2 and the momentum coordinates are:  p1 =  p2 = ∂F 2 = 2q 1P 1 + P 2 ∂q 1 ∂F 2 = P 2 ∂q 2 Solving for P 1 and P 2 , we found the most general transformations: P 2 p1  p2 P 1 = 2q 1 = p2 − Therefore, the Hamiltonian is given by: H  = P 12 + P 2 + Q22 3 but, whether we choose P 2 = p2 + (q 1 + q 2 )2 : H  = P 12 + P 2 the Hamiltonian does not depend upon Q1 and Q2 . Now, solving this Hamiltonian: ˙1 = P  ∂H  − ∂Q =0 ⇒ P 1 = a ∂H  =0 ⇒ − ∂Q P 2 = b 1 ˙2 = P  2 ∂H  = 2P 1 ∂P 1 ∂H  Q˙ 2 = =1 ∂P 2 Q˙ 1 = ⇒ Q1 = 2 P 1 t + c ⇒ Q2 = t + d where a,b,c,d are constant, i.e., the initial values. Replacing with the old coordinates:  p1 + p2 2q 1 = a  p2 + (q 1 + q 2 )2 = b q 12 p1 = − p q 1 = t+d q 1 + q 2 2 t+c Solving this equations, we found: √   p1 = 2a 2at + c + b(t + d)2  p2 = b + (t + d)2 q 1 = q 2 = √ 2at + c √  t − 2at + c + d Goldstein, Ch.9, 28 A charged particle moves in space with a constant magnetic field  B such that the  vector potential, A, is  1 A = (B r) 2 × (a) If  v j are the Cartesian components of the velocity of the particle, evaluate the Poisson brackets  [vi , v j ], i = j = 1, 2, 3  We know that the mometum of a charged particle in an electric field is given by  pi = mvi + qA i pi vi = ⇒ − qA i m then, [vi , v j ] = = = = 1 m2 1  pi [ p − qA , p − qA ]  p , p ] − [ p  p , qA ] − [qA , p ] + q [A , A ]) ([ p i i  j  j  j i  j m2 q   pi , A j ] + [ Ai , p j ]) ([ p m2 q   p j , Ai ] [ p  pi , A j ]) ([ p m2 − − 4 i  j i  j But, the vector potential in terms of the Levi-Civita symbols are: Ai = iab Ba xb Calculate the first term in the previous relation: 1 [ p  p j , iab Ba xb ] 2 1 iab Ba [ p  p j , xb ] 2 1 iab Ba δ  jb 2 1 iaj Ba 2 [ p  p j , Ai ] = = = = Consequently, the second term: 1 [ p  pi , A j ] =  jai Ba 2 Replacing in the relation: q   p j , Ai ] [ p  pi , A j ]) ([ p m2 1 q  1 iaj Ba  jai Ba 2 m 2 2 qB a (iaj  jai ) 2m2 qB a 2iaj 2m2 qBa iaj m2 [vi , v j ] = −  = = −  − = = (b) If  pi is the canonical momentum conjugate to xi , also evaluate the Poisson backets  [xi , v j ],  pi , v j ], [ p 1 [xi , v j ] = [x1 , p˙ j ], − qA ] 1 ([x , p ] − q [x , A ]) m  q  1  δ  − [x ,  B x ] m 2  q  1  δ  −  B [x , x ] 2 m m = [xi , p j  pi , p˙ j ], [ p i = =  j  j i  j ij ij i  jab ij ij  jab a a b i b δ ij ij m = 1 [P i , v j ] = − qA ] 1  p , p ] − q [ p  p , A ]) ([ p m − mq   B [ p p , x ] − mq   B m =  pi , p j [ p i = = 5  j  j i  jab a  jai a i b  j For  p˙i , we know that the Hamiltonian for a charge particle moving in a magnetic field is given by: 1 H  = ( pi qA i )2 − m then then,,  p˙i is:  p˙i = − ∂H  ∂x i = − m1 ( p − qA ) ∂A ∂x i i i i = = = 1 1 ∂x k qA i ) ijk B j ∂x i 2 − m ( p − − 21m ( p − qA ) − 21m ( p − qA ) i i i ijk B j δ ki ki i i iji B j = 0 thus, [xi , p˙ j ] = 0 [ p  pi , p˙ j ] = 0 Goldstein, Ch.9, 34 Obtain the motion in time of a linear harmonic oscillator by means of the formal  soluti solution on for the Poisso Poisson n brack bracket et versio version n of the equation quation of motion motion as derive derived d from from Eq.(9. Eq.(9.116 116). ). Assume that at time  t = 0 the initial values are  x0 and  p0 . The derivation of eq. (9.116) ends up in this relation: u(t) = u0 + t[u, H ]0 + t2 2! [[u, H ], H ]0 + t3 3! [[[u, H ], H ], H ]0 + ... Knowing the Hamiltonian of the linear harmonic oscillator: H  = p2 mw2 x + 2m 2 we can use the previous relation to find the motion in time: [x, H ]0 = [[x, H ], H ]0 = ∂x ∂H  ∂x ∂p 1 m ∂H  p = − ∂x ∂p ∂x m [ p,  p, H ] = 1 m  ∂p ∂H  ∂x ∂p − Pluging them in the initial relation: x(t) = x0 + 6 p0 t m 2 2 − w4t ∂p ∂H  ∂p ∂x  = w2 −2