Preview only show first 10 pages with watermark. For full document please download

Packet Evolution In Trensport Networks Mpls-tp Packetevolution_webinar

Packet Evolution in Trensport Networks

   EMBED


Share

Transcript

Packet Evolution in Transport Networks – MPLS Transport Profile (MPLS-TP) José Liste – [email protected] Hari Rakotoranto – [email protected] Santiago Álvarez – [email protected]  April 2012 • Industry Dynamics and Motivations for Packet Transport • Technology Overview • Cisco MPLS-TP • Use Cases • Network Management • Industry Dynamics and Motivations for Packet Transport • Technology Overview • Cisco MPLS-TP • Use Cases • Network Management Before we dive in, how familiar am I with MPLSTP?  A. Not familiar  B. Learning the technology and assessing applicability to my environment C. Fairly familiar with it and considering potential deployment in the future D. Fairly familiar with it, but not planning to deploy for now Video/Voice Comm / Gaming Web / Other  Data Data File Sharing Video • 15 billion networked • • • • Source: Cisco Visual Networkin Index (VNI) www.cisco.com/go/vni devices in 2015, up from 7 billion in 2010 IP traffic will grow 4-fold from 2010 to 2015 (32% CAGR ) Mobile data traffic will grow 26-fold from 2010 to 2015 (92% CAGR ) IP traffic will reach an annual run rate of 965.5 Exabytes in 2015 (equivalent to 241 billion DVDs ) Mobile was 1% of total IP traffic in 2010, and will be 8% of total IP traffic in 2015 • Many transport networks still based on SONET/SDH (circuit switching technology) • Packet-based growing fast and dominating traffic mix (driven by Video, Mobile, Cloud, application migration to IP) • Increased changes in traffic patterns (mobility, cloud) • Transport networks migrating to packet switching for  Bandwidth efficiency (statistical multiplexing) Bandwidth flexibility (bandwidth granularity, signaling) Packet Network (IP/MPLS) Transport Network (SONET/SDH) Packet Network (MPLS-TP)    Joint agreement between ITUT and IETF to develop a transport profile based on MPLS Packet transport requirements brought to IETF MPLS forwarding, OAM, control plane, management and survivability extended at IETF Requirements MPLS transport extensions MPLS-TP • Connection-oriented packet-switching technology • Point-to-point (P2P) and point-to-multipoint (P2MP) transport paths • Separation of control and management planes from data plane • Deployable with or without a control plane • Should retain similar operational model of  traditional transport technologies • Multi-service (IP, MPLS, Ethernet, ATM, FR, etc) • Should support bandwidth reservation • Support for 1:1, 1:n, 1+1 protection with similar  techniques to traditional transport technologies • Support for In-band OAM Existing functionality prior to MPLS Transport profile Existing functionality meeting transport requirements MPLS Transport Profile MP2P / MP2MP LSP IP forwarding ECMP MPLS Forwarding P2P / P2MP LSP Pseudowire Architecture OAM Resilicency GMPLS New extensions based on transport requirements • Extends MPLS to meet packet transport requirements • Identifies subset of MPLS supporting traditional transport requirements • Data plane Bidrectional P2P and unidirectional P2MP LSP (no LSP Merging) In-band associated channel (G-Ach / GAL) • Control plane Static Dynamic (GMPLS) • OAM In-band Continuity check, remote defect indication Connectivity verification and route tracing Fault OAM (AIS/LDI, LKR) Performance management • Resiliency 50ms switchover  Linear protection (1:1, 1+1, 1:N) Ring protection MPLS-TP currently focuses on Layer-2/1services Services (clients) IPv4 Multicast IPv4 IPv6 IPv4 VPN IPv6 VPN VPMS VPWS VPLS Transport IP/MPLS (LDP/RSVP-TE/BGP) MPLS-TP (Static/RSVP-TE) MPLS Forwarding  Applicability to Next Generation Network Portal  AAA DHCP,DN S EMS Service and Performance Mgmt NMS OAM Subsystem Access Business Corporat e Residentia l STB Business Edge VoD TV MPLS-TP 2G/3G MPLS-TP Aggregation Network PON Corporat e Dark Fibre / CWDM / DWDM and ROADM STB Option 1: MPLS TP for Aggregation Option 2: MPLS TP for Aggregation and Access IP/MPLS Core Business PE DSL Content Network BNG STB Residentia l SIP Ethernet Corporat e Business Multiservice Core Distribution Node Aggregatio n Node Node Residentia l Aggregation Core Network Forwarding Plane    Bi-directional, co-routed LSPs Static LSP QoS Protection OAM      CC/RDI On-demand CV Route Tracing  AIS/LDI/LKR CFI (PW Status)    Linear  protection (1:1, 1+1, 1:N) Reversion Wait-to-restore timer  Services Control Plane   Static Dynamic (GMPLS)     Ethernet/VLAN  ATM TDM MS-PW integration with IP/MPLS • Point to Point • Static or signaled • Bidirectional • Generally, co-routed (same forward and reverse paths) • In-band Generic Associated Channel (G-ACh) • Ultimate hop popping (no explicit/implicit null) • No equal cost multi-path (ECMP) • Contained within a tunnel MPLS-TP LSP G-ACh MPLS-TP Tunnel • Tunnel holds a working LSP and a protected LSP Working Protect (optional) • LSPs may be configured with a bandwidth allocation • Tunnel operationally UP if at least one LSP operationally UP (and not locked out) • LSP operationally UP if OAM (Continuity Check) session operationally UP Working LSP G-ACh Protect LSP G-ACh MPLS-TP Tunnel • LSP requires static configuration of LSP label imposition (output label and output link) • LSP requires static configuration of LSP label disposition (input label) • Static configuration of forward and reverse LSP • LSP defined using LSP ID Source Node Source tunnel number  Destination Node Destination tunnel number  LSP number  • Semantics of source/destination locally MPLS-TP LSP significant MPLS-TP Tunnel G-ACh • Static configuration of label swapping LSP Direction Input Label Output Label Output Interface Forward 323111 334111 Gi2/1 Reverse 343111 111 Gi2/4 (input label, output label and output interface) • Static bandwidth reservation (optional) • In-band OAM packets (fate sharing) • OAM functions can operate on an MPLS-TP network without a control plane • Extensible framework (fault and performance management specifications ratified already) • Independent of underlying technology • Independent of PW emulated service Label PW Label ACH OAM Payload Label GAL ACH OAM Payload 0 0 0 1 Version Reserved Channel Type RFC 5085 0 0 0 1 Version 13 TC 1 1 Reserved Channel Type PW Associated Channel Header  (ACH) G-ACh PW LSP G-ACh Generic Associated Channel Label (GAL) Associated Channel Header  RFC 5586 • OAM capabilities extended using a generic associated channel (G-ACh) based on RFC 5085 (VCCV) •  A G-ACh Label (GAL) acts as exception mechanism to identify maintenance packets • GAL not required for pseudowires (first nibble as exception mechanism) • G-ACh used to implement FCAPS (OAM, automatic protection switching (APS), signaling communication channel, management communication channel, etc) PE1 P1 P2 PE2 • Checks paths continuity between end points (no end point identity verification) • Uses Bidirectional Forwarding Detection BFD CC (Interval x Multiplier) Bi-directional, corouted MPLS-TP LSP Label GAL ACH (BFD) over G-ACh without IP/UDP headers BFD CC (Interval x Multiplier) • BFD operates in asynchronous mode • LSP is UP when BFD session is UP • Session initiation does not require BFD bootstrapping (LSP Ping) BFD (Down) BFD (Init) defect indication (RDI) function BFD (Up/Poll) BFD (Up/Final) BFD (Up) BFD (Up) BFD (Up) • BFD diagnostics field provides remote BFD (Up) • BFD initiated using slow start (1s interval, multiplier of 3) with poll/final sequence PE1 Oper  Up P1 Oper  Up P2 PE2 X • Failure indication sent by local end point to remote end point • Sent on direction opposite to failure Bi-directional, corouted MPLS-TP LSP • Uses existing BFD diagnostics field 0 - No Diagnostic Label GAL ACH 1 - Control Detection Time Expired 3 - Neighbor Signaled Session Down BFD BFD (Up / 0) X BFD (Up / 0) X BFD (Up / 0) X BFD (Down / 3) X BFD (Init / 3) X 4 - Forwarding Plane Reset BFD (Up / 0) 5 - Path Down BFD (Up / 0) 7 - Administratively Down BFD (Down / 1) BFD (Down / 1) BFD (Down / 1) • Diagnostics field indicates reason for last change in session state on an end point Admin Down P1 PE1 Oper  Down P2 PE2 X X Bi-directional, corouted MPLS-TP LSP Label GAL ACH Fault (LDI) Label GAL ACH Fault (LKR) 1 per sec 1 per fault refresh timer  (default 20s) LKR LKR LKR LDI LDI LDI • Fault notifications to enable alarm suppression and to trigger tunnel protection on end points • Three notifications Link Down Indication (LDI)  Alarm Indication Signal (AIS) Lock Report (LKR) •  AIS signals a failure in the server layer  • LDI flag in AIS message indicates a fatal/ permanent failure in server layer  • LKR signals an administrative lock on server  layer  • Fault messages generated by mid points LKR LDI LKR LDI • Fault messages processed by end points • Three messages sent at 1 per sec to set/clear  fault then continuous messages sent at a longer interval Bidirectional Fault Oper  Down Oper  Down X X LDI Unidirectional Fault Oper  Down Oper  Down Oper  Down LDI Oper  Up X Oper  Down Oper  Down LDI RDI Unidirectional Black hole Oper  Down Oper  Up X Oper  Down Oper  Up RDI Unidirectional Shutdown Oper  Down Admin Down LKR X X Oper  Down Oper  Down LDI MPLS-TP LSP Data link • Uses LSP Ping over G-ACh for both CV and route tracing PE1 P1 P2 PE2 • LSP Ping packets use IP/UDP encapsulation used in IP/MPLS Bi-directional, corouted MPLS-TP LSP • IP forwarding NOT required • Only reply mode via control channel (G- Label GAL ACH LSP Ping  ACh - 4) possible • Only end points can send requests • End points and mid points can send replies • End points use MPLS TTL expiration to send a request to a mid point (route tracing) • New FECs defined for static LSP and static pseudowire • CV can be performed on an LSP regardless of its state (up/down) LSP Ping Echo Request TTL=255 LSP Ping Echo Request TTL=255 LSP Ping Echo Reply TTL=255 LSP Ping Echo Reply TTL=255 • Enables performance metrics for packet loss, delay and delay variation • Defines two protocols Loss Measurement (LM) Delay Measurement (DM) • Measuring capabilities One-way / two-way delay Loss - Direct (actual data) Loss - Inferred (test data) Delay variation Throughput • Supports NTP and IEEE 1588 timestamps     )     G     3     /     G     2     (     l    u    a     h     k    c    a     B    e     l     i     b    o     M     )     G     3     /     G     2     (     l    u    a     h     k    c    a     B    e     l     i     b    o     M IETF – Homogenous OAM frameworks at all layers BSC/RNC ATM/TDM TDM / ATM OAM MPLS Service OAM (VCCV/LSP Ping/BFD) Common OAM framework ATM/TDM PW MPLS-TP IETF MPLS-TP OAM (LSP Ping, BFD, LDI/AIS/LKR, etc.) PE P LSP IP/MPLS P PE P LSP P PE IETF IP/MPLS OAM (LSP Ping/BFD) ITU-T – Heterogeneous OAM frameworks at transport layer  BSC/RNC ATM/TDM TDM / ATM OAM MPLS Service OAM (VCCV/LSP Ping/BFD) Operational complexity / inefficiency ATM/TDM PW IP/MPLS MPLS-TP ITU-T MPLS-TP OAM Proposal (G.8113.1/Gtpoam – Y.1731 based) PE P LSP P PE P LSP P PE IETF IP/MPLS OAM (LSP Ping/BFD) Before Failure • Relies on a disjoint working and a Working LSP (Up, Active) PE1 P1 disjoint protect path between two nodes Working LSP (Up, Active) PE2 • Enables 1:1, 1:N, 1+1 protection Protect LSP (Up, Standby) P2 Protect LSP (Up, Standby) • Protection switching can be triggered by During Failure Working LSP (Down, Standby) PE1 Protect LSP (Up, Active) P1 P2 Working LSP (Down, Standby) PE2 Protect LSP (Up, Active) Detected defect condition (LDI/AIS, LKR)  Administrative action (lockout) Far end request (lockout) Server layer defect indication (LOS) Revertive timer (wait-to-restore) • New protocol defined for protection state coordination (PSC) • Revertive mode always selects Working LSP (Up, Standby) PE1 P1 WRT timer  Protect LSP (Up, Active) Working LSP (Up, Standby) PE2 WRT timer  P2 Protect LSP (Up, Active) working LSP as active path if  operationally up • Wait-to-restore (WTR) timer delays selection of working LSP as active path after protection trigger  disappears (fault, lockout) • Timer prevent excessive swapping between working and protect LSP due to intermittent defect • Large WTR timer can provide non- revertive behavior (maximum WTR timer ~68 years) • Restoration (selecting Working LSP as Active) should not result in packet loss PE1 • MPLS-TP does not introduce P1 P2 PE2 any changes to MPLS QoS • Coarse QoS • Ingress node enforces contract (conditioning) and performs aggregate marking on incoming traffic • Packet header encodes packet Traffic Conditioning Per-Hop Behavior   Classification  Classification  Marking  Queuing  Policing  Queue Mgmt  Shaping class (code point) • Class indicates service required at each hop (per-hop behavior) Shim Header  E-LSP Traffic Class (TC) / Experimental (EXP) – 3 bits L-LSP Label – 20 bits TC/ EXP – 3 bits • Existing pseudowire MPLS-TP currently focuses on Layer-2/1services architecture applies to MPLSTP PW1 PW2 LSP PW3 • LSPs typically aggregate multiple services Services (clients) IPv4 IPv6 IPv4 VPN IPv6 VPN VPMS VPWS VPLS Transport IP/MPLS (LDP / RSVP-TE / BGP) MPLS-TP (Static / RSVPTE) MPLS Forwarding •  As usual, pseudowires can be signaled or established via manual configuration Ethernet TDM Virtual Private LAN Service (VPLS) Ethernet Private LAN (EPLAN) Unmuxed UNI Ethernet Virtual Private LAN (EVPLAN) Virtual Private Wire Service (VPWS) Ethernet Virtual Private Line (EVPL) Muxed UNI Ethernet Private Line (EPL) Circuit Emulation over  PSN (CESoPSN) Muxed UNI Structure Agnostic TDM over Packet (SAToP) Muxed UNI Muxed UNI ATM Unmuxed UNI AAL5 over Pseudowire Muxed UNI Cell Relay with Packing over Pseudowire Muxed UNI If I were to deploy MPLS-TP, I’d likely implement the following services (multiple choice)  A. Point-to-Point Ethernet (E-LINE) B. Multipoint Ethernet (E-LAN) C.  ATM D. TDM E. Other   Access Core  Aggregation T-PE S-PE  Aggregation T-PE S-PE MPLS-TP IP/MPLS Static PW Static Tunnel Signaled PW Signaled Tunnel Access MPLS-TP Static PW Static Tunnel • Multi-segment pseudowires (MS-PW) enable layer-2/-1 services over a combined MPLS- TP and IP/MPLS infrastructure • S-PE switches traffic between a static and a dynamic segment • MPLS-TP domain uses static LSP as PSN tunnel and static PW segment • IP/MPLS domain uses signaled LSP (LDP or RSVP-TE) as PSN tunnel and signaled PW segment • Static MPLS-TP provides a simpler migration path for  legacy transport networks • Generalized MPLS (GMPLS) offers a proven control plane for MPLS-TP networks •  A control plane increases Packet transport network intelligence Dynamic services Greater efficiency, resiliency and scalability • GMPLS provides a generalized control plane for hierarchical traffic engineering Legacy transport (circuit switched) Packet transport (dynamic (static / no control plane) control plane) Would I be interested in a dynamic control plane for  a packet transport network?  A. Yes B. No, I'd rather operate a completely static transport network Network Management System Cisco Prime Access Aggregation Distribution/Edge Under  consideration  ASR903  ASR9000 CPT 600 / 200 / 50 7600 Area Functionality Forwarding Static Bi-directional LSP OAM BFD CC On demand CV/Trace (LSP Ping Trace) Fault OAM (AIS/LDI, LKR) Pseudowire status notification VCCV (Ping/Trace) Protection Linear (1:1) Lockout Pseudowire redundancy Bandwidth Management / QoS  Admission Control MPLS DiffServ (E-LSP) Services Ethernet point-to-point Ethernet multipoint  ATM TDM IP Integration with IP/MPLS static/dynamic PW switching (MS-PW) PE1  mpls tp router-id 172.16.255.1 !  bfd-template single-hop DEFAULT interval min-tx 10 min-rx 10 multiplier 3 ! interface Tunnel-tp10 Tunnel description PE1<->PE3 definition no ip address no keepalive tp bandwidth 100000 tp destination 172.16.255.3  bfd DEFAULT  working-lsp Working LSP out-label 2100 out-link 201 in-label 321100 lsp-number 0  protect-lsp Protect LSP out-label 314101 out-link 204 in-label 341101 lsp-number 1 ! ! interface GigabitEthernet2/1 ip address 172.16.0.1 255.255.255.252  mpls tp link 201 ipv4 172.16.0.2 ip rsvp bandwidth percent 100 ! MPLS-TP PE2 In label (w): 321100 Out label (w): 2100 PE1 PE3 In label (p): 341101 Out label (p): 314101 Static TP LSP (tunnel-tp10) TP LSP (Working) TP LSP (Protect) PE3 MPLS-TP PE2 In label (w): 2200 Out label (w): 321100 PE1 PE3 In label (p): 2201 Out label (p): 323201 Static TP LSP (tunnel-tp10) TP LSP (Working) TP LSP (Protect) interface tunnel-tp10 Tunnel description PE3<->PE1 definition  bandwidth 100000 destination 172.16.255.4  bfd   min-interval 15  multiplier 2 !  working-lsp Working LSP in-label 2200 out-label 321100 out-link 701 !  protect-lsp Protect LSP in-label 2201 out-label 323201 out-link 700 ! ! rsvp interface GigabitEthernet0/0/0/0  bandwidth 10000000 ! !  mpls traffic-eng interface GigabitEthernet0/0/0/0 tp link 700 next-hop ipv4 172.16.0.1 ! tp node-id 172.16.255.2 ! ! interface GigabitEthernet2/1 ip address 172.16.0.9 255.255.255.252  mpls tp link link 201 ipv4 ipv4 172.16.0.10 172.16.0.10 ip rsvp bandwidth percent 100 ! interface GigabitEthernet2/2 ip address 172.16.0.18 255.255.255.252  mpls tp link link 202 ipv4 ipv4 172.16.0.17 172.16.0.17 ip rsvp bandwidth percent 100 !  mpls tp lsp lsp source 172.16.255 172.16.255.1 .1 tunnel-tp tunnel-tp 11 lsp lsp protect destinati destination on 172.16.255.4 172.16.255.4 tunnel-tp tunnel-tp 11 11 forward-lsp Forward LSP  bandwidth  bandwidt h 100000 in-label 323111 out-label 334111 out-link 201 reverse-lsp Reverse LSP  bandwidth  bandwidt h 100000 in-label 343111 out-label 111 out-link 202 ! PE2 rsvp interface GigabitEthern GigabitEthernet0/0/0/0 et0/0/0/0  bandwidth 10000000 10000000 ! interface GigabitEthern GigabitEthernet0/0/0/1 et0/0/0/1  bandwidth 10000000 10000000 ! !  mpls traffic-eng traffic-eng interface GigabitEthern GigabitEthernet0/0/0/0 et0/0/0/0 tp link 700 next-hop ipv4 172.16.0.1 ! interface GigabitEthern GigabitEthernet0/0/0/1 et0/0/0/1 tp link 701 next-hop ipv4 172.16.0.6 !  mid PE1-PE3 lsp-number 0 source 172.16.255.1 tunnel-id 10 destination 172.16.255.3 tunnel-id 10 forward-lsp Forward LSP  bandwidth 1000000 1000000 in-label 321100 out-label 321100 out-link 700 ! reverse-lsp Reverse LSP  bandwidth 1000000 1000000 in-label 2200 out-label 321100 out-link 701 ! ! ! ! MPLS-TP PE2 In label (w): 321100 Out label (w): 2100 In label (w): 2200 Out label (w): 321100 PE1 PE3 Static TP LSP (tunnel-tp10) TP LSP (Working) TP LSP (Protect) Ethernet PE1 !  pseudowire-static-oam  pseudowire-staticoam class DEFAULT !  pseudowire-class  pseudowir e-class PW-TunnelPW-Tunnel-tp10 tp10 Pseudowire/ encapsulation mpls Tunnel  protocol none association  preferred-path  preferred -path interface interface Tunnel-tp10 Tunnel-tp10 status protocol notification static DEFAULT ! interface GigabitEthernet2/6 description CONNECTS TO CE1 no ip address service instance 10 ethernet encapsulation dot1q 10 rewrite ingress tag pop 1 symmetric xconnect 172.16.255.3 10 encapsulation mpls \\  manual pw-class pw-class PW-Tunnel-t PW-Tunnel-tp10 p10  mpls label label 9110 9310 9310 Static no mpls control-word  pseudowire ! ! MPLS-TP Ethernet PE2 CE2 CE1 PE1 PE3 VLAN 20 E-LINE E-LINE VLAN 10 PE Local label: 9110 Static pseudowire PW Id 10 PE Local label: 9310 Static TP LSP (tunnel-tp10) TP LSP (Working) TP LSP (Protect) ! interface GigabitEthernet0/0/0/18 description CONNECTS CE2 ! interface GigabitEthernet0/0/0/18.20 l2transport encapsulation dot1q 20 rewrite ingress tag pop 1 symmetric ! l2vpn Pseudowire/  pw-class SS-PW-Tunnel-tp10 Tunnel encapsulation mpls association transport-mode vlan  preferred-path interface tunnel-tp 10 ! ! Static xconnect group PE3 pseudowire  p2p PE1-PE3 interface GigabitEthernet0/0/0/18.20 neighbor 172.16.255.1 pw-id 10  mpls static label local 9310 remote 9110  pw-class SS-PW-Tunnel-tp10 ! ! ! ! Ethernet MPLS-TP Ethernet PE2 CE2 CE1 PE1 PE3 VLAN 20 E-LINE E-LINE VLAN 10 PE Local label: 9110 Static pseudowire PW Id 10 PE Local label: 9310 Static TP LSP (tunnel-tp10) TP LSP (Working) TP LSP (Protect) • Independent test report to be posted soon •  ASR 9000, CPT 600 and 7600 • Comprehensive OAM (CC/RDI, AIS/LDI, LKR, LSP Ping/Trace) • 1:1 revertive linear protection with lockout • E-LINE over combined MPLS-TP and IP/MPLS transport with end-to-end status notification using MS-PW • Cisco Prime Network monitoring MPLS Extension to Access/Aggregation Access Core Aggregation T-PE MPLS-TP S-PE Aggregation S-PE IP/MPLS SONET/SDH Metro Replacement S-PE MPLS-TP Mobile Backhaul Metro PE Access Packet Core RAN PE PE MPLS-TP PE SGW MPLS-TP NodeB / eNodeB RNC MME L2/L3 VPN T1/E1 - STMx SONET/SDH Business IP/MPLS Corporate ADM Residential ADM SONET/SDH STB IP/ MPLS Core ADM Mobile 2G/3G / LTE Business VPWS L2/L3 VPN MPLS-TP IP/MPLS Corporate Residential MPLS-TP STB Mobile 2G/3G / LTE IP/ MPLS Core • • • • • TDM/ATM based access No statistical multiplexing Static Provisioning 50-ms Resiliency Ring or Point to Point topology • NMS Management • SONET/SDH phy stats • Ethernet Packet based Transport • Static Provisioning • 50-ms Resiliency • Ring, Mesh, P2P topology • NMS Management • SONET/SDH phy stats on IPoDWDM If I were to deploy MPLS-TP, I’d be migrating from (Multiple choice)  A. SONET/SDH B.  ATM C. Native Ethernet D. Other  Prime for IP Next Generation Network Architectures Cisco Prime IP NGN Suite Infrastructure Management MPLS and Carrier Ethernet (Core, Distribution, Access) Ran Backhaul Next Generation IPv6 Residential Services Optical Transport Prime Central Prime Fulfillment Prime Network Prime Optical Prime Performance Manager  Prime Address Management (Address Management and Configuration) Prime Network Registrar (IPv6 and scalable DNS and DHCP Servers) Prime Access Registrar  (Authentication, Authorization, Accounting)  ASR903 7600  ASR9000 MPLS-TP Creation Wizard CPT50, CPT200, CTP600 Proactive Monitoring        Service View Logical and Physical Inventory Fault Isolation Complete device management (Physical and Logical) including single-click upgrades Support point-and-click provisioning for Packet Transport including TP Tunnel Path Computation  Alarm De-duplication, Alarm Reduction and Correlation  Advanced troubleshooting tools (overlay, service view) enable MTTR reduction E-OAM Monitoring and Configuration for services running over MPLS-TP Extensive collection of statistic including Y.1731 for Ethernet Performance Management Support released every other month with updated hardware support and releases [email protected] - © 2010 Cisco and/or its affiliates. All rights reserved. Cisco Public 50 • Traffic growth, device proliferation and cloud driving demand for  packet services • MPLS emerging as technology of choice to implement packet transport • MPLS-TP extends MPLS to support operational model of  traditional transport networks • New IETF extensions part of MPLS architecture • Cisco offers a complete solution for IP NGN aggregation with MPLS-TP as a transport alternative • Implementing MPLS Transport Profile (IOS XR) http://cisco.com/en/US/docs/routers/asr9000/software/asr9k_r4.2/mpls/configuration/guide/ b_mpls_cg42asr9k_chapter_0110.html • MPLS Transport Profile Configuration Guide (IOS) http://cisco.com/en/US/docs/ios/mpls/configuration/guide/mp_transport_profile.html • Cisco Prime for IP Next Generation Networks http://cisco.com/go/prime • Cisco SP360: Service Provider Blog http://blogs.cisco.com/tag/mpls-tp/ • Cisco ASR9000 http://cisco.com/go/asr9000 • Cisco ASR903 http://cisco.com/en/US/products/ps11610/index.html IETF MPLS-TP General Definitions General Description Focus Area IETF RFC or WG documents JWT document JWT Report on MPLS-TP Architectural Considerations First milestone on MPLS-TP Joint work by IETF/ITU-T RFC 5317 IAB document Uncoordinated Protocol Dev. Considered Harmful Inter-SDO coordination RFC 5704 General MPLS-TP Terminologies Terminologies draft-ietf-mpls-tp-rosetta-stone Requirements and Frameworks Requirements Frameworks Description and Focus Area IETF RFC or WG documents General MPLS-TP Requirements. RFC 5654 MPLS-TP OAM Requirements RFC 5860 MPLS-TP Network Management Requirements RFC 5951 MPLS-TP Architecture Framework RFC 5921 MPLS-TP Network Management Framework RFC 5950 MPLS-TP OAM Architecture Framework RFC 4378 MPLS-TP Survivability Framework RFC 6372 MPLS-TP Control Plane Framework RFC 6373 MPLS-TP OAM Analysis draft-ietf-mpls-tp-oam-analysis IETF MPLS-TP Data Plane, Protection Definitions MPLS-TP Protocols for Forwarding and Protection Data Plane Protection Function IETF RFC or WG documents MPLS-TP Identifiers conformant to existing ITU and compatible with existing IP/MPLS RFC 6370 MPLS Label Stack Entry: "EXP" renamed to "Traffic Class" RFC 5462 MPLS Generic Associated Channel for In-band OAM and control RFC 5586 In-Band Data Communication for the MPLSTP RFC 5718 MPLS TP Data Plane Architecture RFC 5960 MPLS-TP UNI-NNI RFC 6215 MPLS-TP Linear Protection RFC 6378 MPLS-TP MIB Management Management Function IETF RFC or WG documents MPLS-TP MIB management overview draft-ietf-mpls-tp-mib-management-overview IETF MPLS-TP OAM (FM and PM) Definitions MPLS-TP Fault Management (FM) OAM Functions Proactive FM OAM Functions On demand FM OAM Functions OAM Functions Protocol Definitions IETF WG documents Continuity Check (CC) Bidirectional Forwarding Detection (BFD) extensions RFC 6428 Remote Defect Indication (RDI) Bidirectional Forwarding Detection (BFD) extensions  Alarm Indication Signal (AIS)  AIS message under G-Ach Link Down Indication (LDI) Flag in AIS message Lock Report (LKR) LKR message under G-Ach Config MPLS-TP OAM using LSP Ping LSP-Ping draft-ietf-mpls-lsp-ping-mpls-tpoam-conf  Continuity Verification (CV) LSP Ping and BFD Extensions RFC 6426 Loopback (LBM/LBR) 1) In-band Loopback in G-Ach or 2) LSP Ping extensions RFC 6435 Lock Instruct (LI) In-band Lock messages in G-ACh RFC 6427 MPLS-TP Performance Management (PM) OAM Functions Proactive PM OAM Functions and On demand PM OAM Functions OAM Functions Protocol definitions IETF WG documents Packet loss measurement (LM) LM and DM query messages RFC 6374 Packet delay measurement (DM) LM and DM query messages Throughput measurement Supported by LM Delay Variation measurement Supported by DM Global ID (operator) 4 octets (decimal) – AS Number  Default: 0 (non-global) Global scope Tunnel Number  2 octets (decimal) Scope: Node ID Tunnel ID Src-Node_ID::Src-Tunnel_Num::Dst-Node_ID::Dst-Tunnel_Num Scope: Global ID LSP Number  2 octets (decimal) Default: 0 (Working), 1 (Protect) Scope: Tunnel ID MPLS-TP LSP ID Src-Node_ID::Src-Tunnel_Num::Dst-Node_ID::Dst-Tunnel_Num::LSP_Num Scope: Global ID Router ID (Node ID) 4 octets (decimal) - Loopback scope: Global ID Link Number (Interface Number) 4 octets (decimal) scope: Node ID • Static PWs require in-band CE PE BFD CC (Interval x Multiplier) P P Bi-directional, corouted MPLS-TP LSP Label ACH PE CE BFD CC (Interval x Multiplier) • Existing PW Status TLV sent over G-ACh • Three messages sent at 1 per  OAM Msg (Status) Static PW Status Static PW Status Static PW Status 1 per sec Static PW Status 1 per refresh timer  (default 30s) Static PW Status status notification (no LDP notification sec to set/clear fault then continuous messages sent at a longer interval Common OAM framework IETF – Homogenous OAM frameworks at all layers Ethernet Service OAM (CFM/Y.1731) E-Line MPLS Service OAM (VCCV/LSP Ping/BFD) Ethernet PW MPLS-TP IETF MPLS-TP OAM (LSP Ping, BFD, LDI/AIS/LKR, etc.) PE P LSP IP/MPLS P PE P LSP P PE IETF IP/MPLS OAM (LSP Ping/BFD) ITU-T – Heterogeneous OAM frameworks at transport layer  Ethernet Service OAM (CFM/Y.1731) E-Line MPLS Service OAM (VCCV/LSP Ping/BFD) Operational complexity / inefficiency Ethernet PW IP/MPLS MPLS-TP ITU-T MPLS-TP OAM Proposal (G.8113.1/Gtpoam – Y.1731 based) PE P LSP P PE P LSP P PE IETF IP/MPLS OAM (LSP Ping/BFD)