Preview only show first 10 pages with watermark. For full document please download

Regulation Of The Stress Response By The Gut Microbiota: Implications For Psychoneuroendocrinology

There is now an expanding volume of evidence to support the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. The gut is inhabited by 1013–1014 micro-organisms, which is ten

   EMBED


Share

Transcript

  REVIEW Regulation   of    the   stressresponse   by   thegutmicrobiota:   Implications   forpsychoneuroendocrinology TimothyG.Dinan*,JohnF.Cryan  Alimentary    Pharmabiotic   Centre,   University    College   Cork,   Cork,   Ireland  Received   1   February   2012;   received   in   revised   form   7March   2012;   accepted   7March   2012 Contents 1.Introduction ..   .   ..   .   .   .   .   ..   .   .   ..   .   .   .   .   .   .   .   .   .   .   ..   .   ..   .   .   .   .   ..   .   ...   ..   .   ..   .   ..   .   ...   ..   .   ..   .   ..   .   ..   ...   .   ..   .   ...   .   .   .   1370 2.   Brain—gut   axis   .   ..   .   .   .   .   ..   .   .   ..   .   .   .   .   .   .   .   .   .   .   ..   .   ..   .   .   .   .   ..   .   ...   ..   .   ..   .   ..   .   ...   ..   .   ..   .   ..   .   ..   ...   .   ..   .   ...   .   .   .   1371 3.   ENS   and   CRF   .   .   ..   .   .   .   .   ..   .   .   ..   .   .   .   .   .   .   .   .   .   .   ..   .   ..   .   .   .   .   ..   .   ...   ..   .   ..   .   ..   .   ...   ..   .   ..   .   ..   .   ..   ...   .   ..   .   ...   .   .   .   1371 Psychoneuroendocrinology   (2012)   37 ,1369—1378 KEYWORDS Brain—gut   axis;Microbiota;HPA;Probiotics;Germ-free;Stress;Novel   psychotropics Summary   There   is   now   an   expanding   volume   ofevidence   to   support   the   view   that   commensalorganisms   within   the   gutplay   a   role   in   early   programming   and   later   responsivity   ofthe   stresssystem.   The   gut   is   inhabited   by10 13 —10 14 micro-organisms,   which   is   ten   times   the   number   of    cellsinthe   human   body   and   contains   150   times   as   many   genes   as   ourgenome.   It   has   long   beenrecognised   that   gutpathogens   such   as   Escherichia   coli ,if    they   enter   the   gut   can   activate   the   HPA.However,   animals   raised   in   a   germ-free   environment   show   exaggerated   HPA   responses   topsychological   stress,   which   normalises   with   monocolonisation   by   certain   bacterial   speciesincluding   Bifidobacterium   infantis  .   Moreover,   increased   evidence   suggests   that   animals   treatedwith   probiotics   have   a   blunted   HPA   response.   Stress   induces   increased   permeability   of    the   gutallowing   bacteria   and   bacterial   antigens   to   cross   the   epithelial   barrier   and   activate   a   mucosalimmune   response,   which   in   turn   alters   the   composition   of    the   microbiome   and   leads   to   enhancedHPAdrive.   Increasing   data   from   patients   with   irritable   bowel   syndrome   and   major   depressionindicate   that   in   these   syndromes   alteration   of    the   HPA   may   be   induced   by   increased   gutpermeability.   In   the   case   ofirritable   bowel   syndrome   the   increased   permeability   can   respondto   probiotic   therapy.   Detailed   prospective   studies   in   patients   with   mood   disorders   examining   thegutmicrobiota,   immune   parameters   andHPA   activity   are   required   to   throw   further   light   on   thisemerging   area.   It   is   however   clear   that   the   gut   microbiota   must   be   taken   into   account   whenconsidering   the   factors   regulating   the   HPA. #   2012   Elsevier   Ltd.   All   rights   reserved. *   Corresponding   author   at:   Department   of    Psychiatry,   Cork   University   Hospital,   Wilton,   Cork,   Ireland.   Tel.:+353   214901224. E-mail   address:   [email protected]   (T.G.   Dinan).  Available   online   at   www.sciencedirect.com journa   lh   omepa   ge:   www.e   lsevier.c   om/l   ocate/psyne   ue   n0306-4530/$   —   see   front   matter   #   2012Elsevier   Ltd.   All   rights   reserved.doi:10.1016/j.psyneuen.2012.03.007  4.   Content   of    gut   microbiota   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1371 5.   Microbiota   and   the   HPA   ..   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1372 6.   Probiotics   and   the   stress   response   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1373 7.   Antibiotics   and   stress ....   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1374 8.   Probiotics   and   glucocorticoids   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1374 9.   Influence   of    stress   on   themicrobiome   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1374 10.   Concluding   remarks   ..   ...   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1375 Acknowledgements   ..   ...   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1376 References .   ..   .   .   .   .   ..   ...   ...   .   ..   ..   .   ...   .   ..   .   .   .   ...   ...   .   ...   .   .   ...   .   ...   .   .   .   .   .   ....   ...   .   .   .   .   ..   ...   .   ..   .   .   .   .   1376 1.Introduction The   hypothalamic—pituitary-adrenal   axis   (HPA)   and   otheraspects   of    the   stress   response   are   regulated   by   exposureboth   to   psychological   stressors   and   physical   stressors   such   asinfections   (Dinan   and   Scott,   2005).Response   of    the   HPA   andthe   sympathoadrenal   medullary   system   (SAM)   to   psychologi-cal   stress   is   mediated   by   key   neurotransmitter   systems   suchas   the   serotonergic   (5HT)   and   norepinephrine   (NE)   systemswith   endorphins   playing   an   important   inhibitory   role   (Dinan,1996;   Bhatnagar   and   Dallman,   1998).Infective   agents   acti-vate   the   neuroendocrine   system   via   pro-inflammatory   cyto-kines,   which   exert   influence   on   the   hypothalamus   especiallyon   the   parvicellular   neurons   of    theparaventricular   nucleus(Dinan,   2001;   Rivest,   2010).   Moreover,   theHPA   is   tightlyregulated   torespond   efficiently   to   gut   pathogens   such   as Escherichia   coli .In   anelegant   series   of    recent   studiesZimomra   et   al.   (2011)   demonstrated   that   the   initial   activa-tion   of    the   HPA   axis   inresponse   to   E.   coli   infection   islargelymediated   by   COX-induced   prostanoid   synthesis.   This   riseincirculating   corticosterone   correlates   with   the   riseincircu-lating   PGE2   and   administration   of    indomethacin   (non-selec-tive   COX   inhibitor),   abolished   the   early   rise   inplasmacorticosterone.   Furthermore,   corticosterone   levels   reach   apeak   before   maximum   circulating   ACTH,   indicating   thatprostaglandins   stimulate   corticosterone   release   through   anACTH-independent   mechanism.   When   prostaglandin   produc-tion   iscompletely   inhibited,   corticosterone   levels   increased2h   following   E.   coli   challenge,   confirming   that   other   factorsstimulate   HPA   responses   atthis   later   time.   Asignificantcorrelation   between   the   rise   of    pro-inflammatory   cytokinesand   corticosterone   is   observed.   Administration   of    rat   IL-6antibodies   attenuates   theelevation   incorticosterone   2   hfollowing   E.   coli   challenge.   This   dataisconsistent   withprevious   work   showing   that   PGE2   directly   mediates   corticos-terone   release   from   cultured   rat   adrenals   (Mohn   et   al.,   2005)and   cortisol   release   from   human   adrenal   H295R    cells(Vakharia   and   Hinson,   2005)   (Fig.   1). Figure   1   At   a   hypothalamic   level   classic   neurotransmitters   andcytokines   regulate   corticotrophin   releasing   hormone   (CRH)   andvasopressin(AVP)   release   into   the   portal   vasculature.   A   series   of    negative   feedback   loops   controls   the   forward   drive.   The   adrenalcortex   can   be   directly   activated   by   PGE2   from   the   immune   system   stimulated   by   gut   pathogens. 1370   T.G.   Dinan,   J.F.Cryan  However,   that   non-pathogenic   gut   microbes   might   influ-ence   the   HPA   isarelatively   novel   concept.   There   isnow   anexpanding   volume   of    evidence   to   support   theview   thatcommensal   organisms   within   the   gut   play   a   rolein   earlyprogramming   and   later   responsivity   of    the   stress   system(Grenham   et   al.,   2011).   This   network   has   been   termed   thebrain—gut—microbiota   and   here   we   will   review   the   datasupporting   the   role   of    gut   microbes   in   determining   stressreactivity   especially   through   the   HPA. 2.   Brain—gutaxis Itis   well   established   that   the   brain   regulates   gut   activity   butrecent   attention   has   focused   on   thereverse   pathway   and   themanner   in   which   gut   microbes   can   influence   the   brain   (Gren-ham   et   al.,   2011).   This   brain—gut—microbiota   axis   includesthe   central   nervous   system   (CNS),   theneuroendocrine   andneuroimmune   systems,   the   sympathetic   and   parasympa-thetic   arms   of    the   autonomic   nervous   system,   the   entericnervous   system   (ENS)   and   of    course   the   intestinal   microbiota(Rhee   et   al.,   2009;   Cryan   and   O’Mahony,   2011).   These   com-ponents   interact   to   form   a   complex   reflex   network   withafferent   fibres   that   project   to   integrative   CNS   structuresand   efferent   projections   to   the   smooth   muscle.   This   bidirec-tional   communication   network   enables   signals   from   the   brainto   influence   the   motor,   sensory   and   secretory   modalities   of the   gastrointestinal   tract   and   conversely,   visceral   messagesfrom   the   gut   can   influence   brain   function,   especially   areas   of the   brain   devoted   to   stress   regulation,   most   notably   thehypothalamus.The   vagus   provides   an   important   line   of    communicationbetween   the   gut   microbiota   and   the   HPA.   Hosoi   et   al.   (2000)measured   the   expression   of    CRF   mRNA   inthe   hypothalamusand   plasma   levels   of    ACTH   and   corticosterone   after   vagalstimulation   inrodents.   CRF   mRNA   in   the   hypothalamus   wasincreased   2h   after   vagal   stimulation   and   plasma   levels   of ACTH   were   markedly   elevated.   They   also   observed   increasesin   plasma   levels   of    corticosterone.   Ofclinical   relevance   isthefact   that   vagal   nerve   stimulation   is   associated   withclinicalantidepressant   benefit   (Nemeroff    et   al.,   2006)   coupled   withnormalisation   of    HPA   parameters   in   patients   with   treatmentrefractory   depression   (O’Keane   et   al.,   2005),   indicating   thatthe   vagus   not   only   impacts   on   HPA   activity   but   also   on   thecore   pathophysiology   of    major   depression.The   top-down   and   bottom-up   perspective   of    informationflow   as   well   asthe   detailed   structural   integration   and   func-tioning   of    the   various   brain—gut—microbe   axis   componentshas   been   reviewed   extensively   elsewhere   (Mayer,   2011).   It   isbecoming   clear   that   alterations   in   this   communication   play   afundamental   role   in   a   wide   variety   of    disorders.   Moreover,the   possibility   of    regulating   the   gut   microbiota   is   opening   upas   atractable   therapeutic   target   for   a   host   of    stress-relateddisorders. 3.ENS   andCRF The   ENS   is   acomplex   neuronal   network   with   multiple   neuro-transmitters   and   neuromodulators   including   5-HT,   acetylcho-line   and   CRF.   Although   prominence   has   been   given   to   thecentral   srcins   of    CRF-mediated   changes   in   gastrointestinalfunction,   the   presence   of    theCRFligand   and   receptors   withinthe   ENS   indicate   the   likelihood   that   peripheral   pathways   alsoplay   a   role   inthe   local   regulation   of    gut   function   during   timesof    stress   (O’Malley   et   al.,2010).   Indeed,   activation   of    gutCRFR1   contributes   to   stress-induced   increases   in   colonicmotility,   defecation,   permeability   and   visceral   pain   sensa-tion   (Larauche   et   al.,   2009).   Activation   of    peripheral   CRFR2inhibits   gastric   emptying,   suppresses   stimulated   colonicmotor   function   and   prevents   hypersensitivity   to   repeatedcolorectal   distension.   CRFR2   has   also   been   proposed   to   havea   roleinstress-induced   permeability   dysfunction   and   themodulation   of    mucosal   immune   andinflammatory   responsesin   the   colon   (Gareau   et   al.,   2008).   Furthermore,   CRF   candirectly   activate   myenteric   neurons   to   increase   colonic   moti-lity   and   permeability   and   stimulate   diarrhoea   in   rodents(Tache´,   2004).   As   the   ENS   iscomprised   of    sensory,   motorand   interneurons   which   are   bidirectionally   linked   to   theCNSvia   sympathetic   and   parasympathetic   pathways,   the   expres-sion   of    CRFR1   and   CRFR2   on   these   neurons   and   nerve   fibresplaces   them   inan   ideal   position   to   act   assignalling   peptidesin   thebrain—gut   axis   (Tache   etal.,1999).The   contrasting   actionsof    CRFR1   andCRFR2   are   furtherunderlined   by   differential   expressionpatterns.   CRFR2   ispre-valent   inupper   regionsof    theguttract   (Wuet   al.,   2008),whereas   CRFR1   is   more   widespreadin   thecolon.   CRFR1   isstrongly   expressed   inmucosal   cells   (O’Malley   et   al.,   2010),where   it   mayregulatestress-inducedionsecretion   andpara-cellular   permeability   leading   to   bacterial—hostinteractionsand   mucosal   inflammation.   CRFR2   hasalso   been   detectedinthe   colonicmucosa   andhas   similarly   been   proposed   tohave   arole   instress-inducedpermeability   dysfunctionand   the   mod-ulation   of    mucosalimmune   and   inflammatory   responses   in   thecolon   (Teitelbaum   et   al.,   2008),but   isalsoimportant   inexerting   anti-nociceptiveeffects   on   visceral   pain   (Millionet   al.,   2005).Evidence   isnowmounting   that   stressresultsinthe   recruitment   and   activationof    CRF   receptorsin   the   colontoinduce   thestress-related   changes   in   gutfunctionand   that   aheightened   stresssusceptibility   results   in   altered   expression   of CRF   receptors. 4.Contentofgut   microbiota The   gut   isinhabited   by   10 13 —10 14 micro-organisms,   which   isten   times   thenumber   of    human   cells   in   our   bodies   andcontains   150   timesas   many   genes   asour   genome   (Qinet   al.,2010).   The   estimated   species   number   varies   greatlybut   it   is   generally   accepted   that   the   adult   microbiome   con-sists   of    greater   than   1000   species   and   more   than   7000   strains(Ley   etal.,   2006).   It   is   an   environment   dominated   by   bac-teria,   mainly   strict   anaerobes,   but   also   including   viruses,protozoa,   archae   and   fungi.   The   microbiome   islargelydefined   by   2   bacterial   phylotypes,   Bacteroidetes   and   Firmi-cutes   with   Proteobacteria,   Actinobacteria,   Fusobacteria,and   Verrucomicrobia   phyla   present   in   relatively   low   abun-dance   (Xu   et   al.,2007).Traditional   culture-based   analysis   used   to   define   theenteric   flora,   is   only   adequate   for   a   minority   of    the   gutmicrobiota   that   isamenable   to   cultivation   (Xuet   al.,2007;Eckburg   et   al.,2005).   This   methodological   problem   has   beencircumvented   by   the   use   of    culture-independent   techniques,   aportfolio   consisting   ofsequencing   based   methods,   geneticfingerprinting,   fluorescently   labelled   oligonucleotide   probesRegulation   of    the   stress   response   by   the   gut   microbiota   1371  (FISH),   quantitative   PCR    aswellas   metagenomic   approaches(Archie   and   Theis,   2011).   Therealisation   thatthe   secretoryand   metabolic   capability   of    the   microbiome   was   likely   asimportant   as   phylotype   composition   has   also   led   to   the   useof    metabolomic   andmetaproteomic   approaches   to   improveour   understanding   of    gut   microbial—host   interactions   (O’Haraand   Shanahan,   2006).   Unfortunately,   advances   in   culturemethods   havenotkeptpace   with   the   riseof    these   alternativetechnologies   and   adual-pronged   line   of    attack   may   berequired   to   complete   the   circle,anotinconsiderable   logisticalchallenge.While   the   gut   shows   enormous   microbial   diversity   it   isnowclear   that   there   are   important   developmental   and   longitu-dinal   variations   which   impact   on   the   functioning   of    theHPAand   the   wider   stress   axis.   Colonisation   of    the   infant   gutcommences   atbirth   when   delivery   exposes   the   infant   to   acomplex   microflora   and   its   initial   microbiome   has   amaternalsignature   (Ma¨ndar   and   Mikelsaar,   1996;   Mackie   et   al.,   1999;Adlerberth   and   Wold,   2009).   The   microbiome   of    unweanedinfants   is   simple   withhigh   inter-individual   variability   (Kur-okawa   et   al.,   2007;   McCracken   and   Lorenz,   2001).Thenumbers   and   diversity   of    strict   anaerobes   increase   as   a   resultof    diet   and   environment,   and   after   1   year   of    age   a   complexadult-like   microbiome   is   evident.   Despite   asignificant   inter-personal   variation   in   the   enteric   microbiota,   there   seems   tobe   abalance   that   confers   health   benefits   and   an   alteration   inbeneficial   bacteria   can   negatively   influence   the   wellbeing   of the   individual   (Cryan   and   O’Mahony,   2011).   Several   factorsmay   alter   the   microbiome   such   as   infection,   disease,   diet   andantibiotics,   but   as   ageneral   rule,   ittends   to   revert   to   thestable   diversity   established   in   infancy   once   the   threat   of    theinitial   distorting   factor   has   subsided   (Forsythe   et   al.,   2010).Interestingly,   ithas   been   shown   that   the   core   microbiota   of an   aged   individual   is   distinct   from   that   of    younger   adults(Claesson   etal.,2011)   and   that   age   related   shifts   inthecomposition   of    theintestinal   microbiota   are   linked   toadverse   health   effects   in   the   elderly   host   (Woodmansey,2007).   The   number   of    Bifidobacteria   decreases   withage(Claesson   etal.,2011)   and   parallels   changes   in   health   statusand   decreased   plasticity   within   the   HPA.   It   is   important   tonote   that   the   HPA   has   been   strongly   implicated   in   suscept-ibility   to   the   development   of    obesity   and   the   metabolicsyndrome   (Dallman,   2010;   Finger   et   al.,   2011,   2012).   Intandem   increasing   evidence   points   to   a   role   of    gut   microbiotain   obesity   (Turnbaugh   and   Gordon,   2009;   Davey   et   al.,2012).Whether   HPA   and   gut   microbiome   interact   directly   in   obesityremains   an   area   for   future   investigation. 5.MicrobiotaandtheHPA  The   use   of    germ   free   (GF)   animals   (with   no   bacterial   expo-sure)   has   provided   one   of    themost   significant   insights   into   therole   of    the   microbiota   inregulating   the   development   of    theHPA.   The   germ   free   paradigm   is   based   on   thefact   that   theuterine   environment   issterile   during   prenatal   development(Adlerberth   and   Wold,   2009)   and   with   surgical   delivery   repla-cing   the   normal   vaginal   delivery,   the   opportunity   for   post-natal   colonisation   of    the   gut   iseliminated   once   animals   aremaintained   ina   sterile   environment.   Subsequent   comparisonwith   their   conventionally   colonised   counterparts   allowsinferences   to   bedrawn   regarding   the   morphological   andphysiological   parameters   that   may   beunder   the   influenceof    the   developing   microbiota.   An   alternative   approach   is   theinduction   of    dysbiosis   of    the   enteric   flora,   either   throughadministration   of    antibiotics   or   deliberate   infection   in   pre-clinical   studies   (Bennet   et   al.,2002).Broad   spectrum   anti-biotics   inparticular   are   known   to   perturb   the   microbiome   byreducing   biodiversity   and   delaying   colonisation   and   arewidely   used   asa   method   to   intentionally   alterthemicro-biome   ina   reproducible   manner   (Donskey   et   al.,   2003).The   morphological   consequences   of    growing   up   germ   freewere   evidenced   by   thegreatly   enlarged   cecum,   reducedintestinal   surface   area,   increased   enterochromaffin   cellarea,   smaller   Peyer’s   Patches   and   smaller   villous   thicknessinthese   animals   compared   to   conventional   controls   (Abramset   al.,1963).   It   was   not   surprising,   given   these   gross   struc-tural   aberrations,   that   multiple   facets   of    normal   functionincluding   that   of    the   stress   response   would   also   be   affected.Toll-like   receptors   (TLRs)   are   present   on   cells   of    theinnateimmune   system   and   recognise   characteristic   moleculestermed   pathogen   associated   molecular   patterns   (Akira   andHemmi,   2003).These   receptors   are   the   gateway   to   animmune   response.   Pathogen   recognition   by   aparticularTLR    results   in   a   cascade   of    events   leading   to   the   activationof    the   NF- k B   signalling   system,   production   and   release   of cytokines   and   activation   of    the   HPA.   However   intheabsenceof    the   resident   enteric   flora,   key   members   of    the   TLR    familyhave   low   orabsent   expression   profiles   inthe   gut,thuscompromising   appropriate   immune   and   neuroendocrineresponses   to   pathogenic   threats   (O’Hara   and   Shanahan,2006).   For   example   theTLR4   knockout   mouse   does   notrespond   to   Gram   negative   bacteria   with   an   activation   of the   HPA   (Gosselin   and   Rivest,   2008)Seminal   studies   by   Sudo   et   al.   (2004)   provide   insight   intothe   role   of    theintestinal   microbiota   inthe   development   of the   HPA   axis.   In   germ   free   mice   a   mild   restraint   stress   inducesan   exaggerated   release   of    corticosterone   and   ACTH   com-pared   to   thespecific   pathogen   free   (SPF)   controls.   The   stressresponse   intheGF   miceis   partially   reversed   by   colonisationwith   faecal   matter   from   SPF   animals   and   fully   reversed   bymonoassociation   with Bifidobacterium   infantis    in   atimedependant   manner   (Bailey   and   Coe,   1999).   This   study   clearlydemonstrated   that   themicrobial   content   of    the   gut   is   criticalto   the   development   of    anappropriate   stress   response   laterinlife   and   also   that   there   is   anarrow   window   in   early   life   wherecolonisation   must   occur   to   ensure   normal   development   of    theHPA   axis.The   question   emerges   whether   the   gut   flora   can   have   aninfluence   over   neural   circuits   and   behaviour   associated   withthe   stress   response?   Sudo   et   al.(2004)   reported   adecrease   inbrain   derived   neurotrophic   factor   (BDNF),   akey   neurotrophininvolved   in   neuronal   growth   and   survival,   and   expression   of the   NMDA   receptor   subunit   2a   (NR2a)   inthe   cortex   andhippocampus   of    male   GF   animals   compared   to   SPF   controls.On   the   other   hand,   Neufeld   et   al.(2011)   actually   found   anincrease   inhippocampal   BDNF   mRNA   in   female   mice   that   wascontrary   to   the   protein   decreases   observed   in   the   earlierstudy.   We   have   recently   also   found   decreases   in   hippocampalBDNF   mRNA   levels   as   well   as   adistinct   changes   intheserotonergic   system   in   male   but   not   female   mice   (Clarkeet   al.,submitted   for   publication).   This   suggests   that   areg-ulation   of    microbiome—gut—brain   axis   may   besex   depen-dent.   Alterations   inhippocampal   NMDA   and   5HT1A   receptor1372   T.G.   Dinan,   J.F.Cryan  expression   have   been   shown   ina   number   of    studies   (Neufeldet   al.,   2011).   Both   of    these   receptors   areknown   to   influenceCRH   release   fromthe   hypothalamus   and   changes   inexpres-sion   may   explain   altered   HPA   function   in   germ   free   animals.This   decreased   anxiety   in   germ   free   animals   has   been   repro-duced   in   other   laboratories   in   both   the   elevated   plusmazeand   the   light   dark   box   (where   germ   free   animals   spent   moretime   in   the   light   compartment)   (Heijtz   et   al.,   2011).It   islong   knownthatstress   andHPAcaninfluence   thecomposition   ofgutmicrobiome(Tannock   andSavage,1974).   However,thefunctional   consequences   ofsuchchanges   arenowonly   beingunderstood.   Maternal   separa-tion,   an   early   lifestressor   which   can   resultinlong-termHPA   changes   (O’Mahonyetal.,   2011)   has   beenshown   to,cause   asignificantdecrease   infaecal   lactobacillion   day   3post   separation,   which   returnstobaseline   by   day   7   asassessedby   enumeration   oftotalandGram-negative   aero-bic   and   facultativeanaerobic   bacterialspecies(Bailey   andCoe,   1999).However,   earlylifestress   can   also   havelongtermeffectsonthemicrobiome.   Analysis   of    the16S   rRNAdiversity   inadult   rats   exposed   to   maternal   separationfor3   h   perday   from   post   natal   days   2—12   revealed   a   signifi-cantlyaltered   faecalmicrobiomewhencomparedtothenon-separated   controlanimals(O’Mahonyetal.,2009).Astudy   usingbacterial   tagencodedFLXamplicon   pyrose-quencing   (bTEFAP)   demonstrated   that   thecommunitystructure   ofmicrobiota   frommiceexposedtoa   prolongedrestraintstressorwas   significantlydifferent   thanthecom-munity   structurefoundinnon-stressed   control   mice   (Bai-ley   et   al.,2010).   Morerecently   usingthesame   approachrepeated   socialstressor   hasbeen   shown   todecrease   therelative   abundanceofbacteriainthe   genusBacteroides,while   increasingthe   relative   abundance   of    bacteria   in   thegenusClostridiuminthececum.Thestressor   alsoincreased   circulatinglevelsof    IL-6   and   MCP-1,   which   weresignificantlycorrelated   withstressor-induced   changestothreebacterial   genera(i.e.,Coprococcus,   Pseudobutyrivi-brio,   and   Dorea).Interestingly,antibiotic   exposure   blockedthe   increase   IL-6and   MCP-1.   Thesedata   showthatexpo-sure   torepeated   stressaffectsgutbacterial   populationsina   cytokinedependentmanner   (Bailey   et   al.,   2011). 6.Probioticsandthestressresponse A   probiotic   isgenerallydefined   as   a   livemicro-organismwhich   whenadministeredinadequate   amountsconfersahealth   benefit   onthe   host   (Quigley,2008).Probioticsareemerging   as   potential   therapeuticsfor   stress-related   gas-trointestinal   disorders   such   as   irritablebowelsyndrome.Overstated   and   exaggeratedclaimsfor   thehealth   benefitsof    probiotics   have   beenmade.In   realitymany   of    theseclaimsarebased   on   weak   or   non-existent   data.Morerecently,probiotic   administrationstudiessupport   a   roleforthemicrobiotainanxiety   like   behaviours   (Bercik   et   al.,2011a).   Administration   of  L.helveticus  R0052   and B.longum   R0175   taken   incombinationproduces   anxiolytic-likeactivityinrats   (Messaoudi   etal.,2011).   This   findingmustbe   viewed   cautiously   giventhefact   thatmany   smallmolecules   which   apparentlyhave   anxiolytic   impact   inrodentslack   efficacy   whensubjectedto   rigorousevalua-tion   in   man.Arecent   studyfound   that   chronic   treatment   with   theprobiotic   Lactobacillus    rhamnosus    over   28   days   producedanimals   with   lower   levels   of    corticosterone   andreduceddepressive   behaviours   in   the   forced   swim   test   in   additionto   a   less   anxious   phenotype   in   the   elevated   plusmaze   (Bravoet   al.,   2011).   Alterations   inGABA   the   maininhibitory   neuro-transmitter   system   were   also   observed.   L.   rhamnosus    treatedanimals   showed   alterations   of    GABAB1b   mRNA   inthe   brainwith   increased   expression   incortical   regions   and   decreasedexpression   in   thehippocampus,   amygdala,   and   locus   coer-uleus   aswell   as   reduced   GABAA a 2mRNA   expression   intheprefrontal   cortex   and   amygdala   and   increased   GABAA a 2inthe   hippocampus.   The   mechanism   behind   these   changes   waspartially   elucidated   by   studies   in   vagotimised   animals.   Theneurochemical   and   behavioural   effects   of    this   bacterium,   donot   occur   following   vagotomy,   indicating   that   the   vagus   is   akey   route   of    communication   between   probiotic   bacteria   andthe   brain.   A   rolefor   the   gut   microbiota   inpain   perception   hasalso   been   indicated,   with,   one   study   demonstrating   thatspecific   Lactobacillus    strains   could   induce   the   expressionof    m -opioid   and   cannabinoid   receptors   in   intestinal   epithelialcells   and   mimic   the   effects   of    morphine   inpromoting   analge-sia   (Rousseaux   etal.,2007).   HPA   parameters   were   not   mea-sured   in   the   study.Bercik   et   al.(2011a)   have   shown   that   infection-inducedbehavioural   changes   were   associated   with   decreased   hippo-campal   BDNF   mRNA   which   could   bereversed   by   a B.   longum without   affecting   cytokine   ortryptophan   metabolism.   Inter-estingly,   these   authors   find   that   manyeffects   of    probioticsoccur   independent   of    vagus   nerve   activation   (Bercik   et   al.,2010,   2011b).Other   potential   mechanisms   through   which   probiotics   mayinfluence   the   HPA   and   stress   responsivity   include   neurotrans-mitter   modulation.   B.   infantis    35624,   for   example,   has   beenshown   inSprague-Dawley   rats   to   induce   an   elevation   inplasma   tryptophan   levels,   a   precursor   to   serotonin   (5-HT)which   isakey   neurotransmitter   within   the   brain—gut   axis(Desbonnet   etal.,   2008).Since   CNStryptophan   concentra-tions   are   largely   dependent   on   peripheral   availability   and   theenzymatic   machinery   responsible   for   theproduction   of    5-HTis   not   saturated   at   normal   tryptophan   concentrations   (Rud-dick   et   al.,   2006),the   implication   here   is   that   the   microbiotamight   play   some   rolein   theregulation   of    CNS   as   well   asenteric   nervous   system   5-HTsynthesis.   This   effect   ispoten-tially   mediated   by   the   impact   of    themicrobiota   on   theexpression   of    indoleamine-2,3-dioxygenase,   a   key   enzymein   the   physiologically   dominant   kynurenine   pathway   of    tryp-tophan   degradation   (Forsythe   etal.,   2010)   but   of    coursemultiple   mechanisms   are   possible   and   indeed   likely,   giventhe   strain   specific   effects   that   have   been   observed   in   manyprobiotic   studies   to   date.Diet   plays   an   important   rolein   relation   to   the   compositionof    the   microbiota   and   alterations   indiet   are   known   to   changethe   microbial   content   of    thegut.   Aclinical   trial   wasper-formed   on   apopulation   of    30   human   subjects,   whowereclassified   in   low   and   high   anxiety   traits   (Martin   et   al.,   2009).Biological   fluids   (urine   and   blood   plasma)   were   collectedduring   3   test   days   atthe   beginning,   midway   and   at   theend   of    a2   week   study.   NMR    and   mass   spectroscopy   basedmetabonomics   were   employed   to   study   global   changes   inmetabolism.   Human   subjects   with   higher   anxiety   traitsshowed   adistinct   metabolic   profile   indicative   of    adifferentRegulation   of    the   stress   response   by   the   gut   microbiota   1373